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Concise formulary 
 

Some definitions and formulae from the main text are represented in concise form1. 

1 Q0-triangle 
Let be j, m, n natural numbers, k an integer number with |(n+k)/2| smaller or equal n, 
i.e. k is contained in the interval [-n,n], starting with -n, stepping by 2 until +n . 
Furthermore p is a number contained in the interval [0,1]. We define 
 
 

𝑄0𝑃(𝑛, 𝑘, 𝑝): =
𝑝(𝑛+𝑘) 2⁄  (1 − 𝑝)(𝑛−𝑘) 2⁄  𝑛!

(
𝑛 + 𝑘

2
) !  (

𝑛 − 𝑘
2

) ! 
  

 
The function Q0P(n,k,p) represents the probability of reaching coordinate k after n 
steps of a Bernoulli random walk, if the probability of a step in positive k-direction 
(e.g. right hand direction) is equal to p (and so for a step to the opposite direction is 
equal to 1-p). The numbers Q0 (n, k) of the Q0-triangle correspond to the special 
case of same probabilities for steps to the right and to the left, i.e. for p=(1-p)=0.5: 
 
𝑄0(𝑛, 𝑘) = 𝑄0𝑃(𝑛, 𝑘, 0.5) 

 
The probabilities Q0Z (n) for return ("central meeting probabilities") correspond to the 
special case k = 0: 

𝑄0𝑍(𝑛) = 𝑄0𝑃(𝑛, 0,0.5) =
𝑛!

2𝑛 (
𝑛
2
) ! (

𝑛
2
) !

  

2 Q1-triangle 
The Q1-triangle results from a superposition of two Q0-triangles with opposite sign, 
starting in position n=1, k=±1 after multiplication by 1/2. Addition of both means a 
"discrete differentiation" along k. 

𝑄1(𝑛, 𝑘) =  − 
 𝑘

𝑛
 𝑄0(𝑛, 𝑘)  

 
The absolute values |Q1 (n, k)| also arise, if after starting in row n=1 the following 
rows are constructed in usual way, but the numbers in the row centers k=0 are set to 
0 in every row with even row number respectively, are so to speak "flown out", so that 
they can't be sources subsequently. Let for every even row number n be -Q2Z(n) 
"flowing out probability" there, i.e. the probability for flowing out centrally. Q2Z(n) is 
equivalent to the 1nd (discrete) derivative of Q1(n,k) in k=0 along k, i.e. Q2Z(n) = 
(Q1(n-1,1)-Q1(n-1,-1))/2; so Q2Z(n) is in k=0 the 2nd derivative of Q0(n,k) along k. It 
holds: 
 

𝑄2𝑍(𝑛) =
𝑄1(𝑛 − 1,1) − 𝑄1(𝑛 − 1,−1)

2
= −

𝑛!

2𝑛(𝑛 − 1) (
𝑛
2) ! (

𝑛
2) !

= −
𝑄0𝑍(𝑛)

𝑛 − 1
 

3 Q0M-triangle 

                                            

1 In wqm (contained in the download of the older texts) is a more extensive formulary. 
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𝑄0𝑀(𝑛, 𝑘): =
(−0.5)(𝑛+𝑘) 2⁄  0.5 (𝑛−𝑘) 2⁄  𝑛!

(
𝑛 + 𝑘

2 ) !  (
𝑛 − 𝑘

2 ) ! 
 =  (−1)(𝑛+𝑘) 2⁄  𝑄0 (𝑛, 𝑘) 

Q0M(n,k) is in case of  odd n antisymmetric and 

            in case of even n     symmetric regarding to k=0 . 

So addition behavior of right and left side is like the one of amplitudes of fermions resp. bosons. 

4 Taylor series expansions 

1

√1 − 𝑥2
= ∑ 𝑄0𝑃 (2𝑛, 0,

1 + √1 − 𝑥2

2
) = ∑ 𝑄0𝑍(2𝑛)𝑥2𝑛

∞

𝑛=0

∞

𝑛=0

 

√1 − 𝑥2 = ∑ 𝑄2𝑍(2𝑛) 𝑥2𝑛

∞

𝑛=0

 

1

√1 + 𝑥2
= ∑ 𝑄0𝑀(2𝑛, 0) 𝑥2𝑛

∞

𝑛=0

 

5 Limits 
 

lim
𝑛→∞

 

[
 
 
 
∑ ∑ 𝑄0𝑍(2𝑚)𝑙 2⁄

𝑚=0
𝑛
𝑙=0

√8𝑛3

9𝜋

,
∑ 𝑄0𝑍(2𝑚)𝑛 2⁄

𝑚=0

√2𝑛
𝜋

,
𝑄0𝑍(𝑛)

√ 2
𝜋 𝑛

,
−𝑄2𝑍(𝑛)

√ 2
𝜋 𝑛3 ]

 
 
 

 =  [1, 1, 1, 1] 

 

6 Multiple discrete differentiation (Formation of higher-order finite 
differences) 

Similarly to the analytical case multiple discrete differentiation can be defined 
recursively (by formation of higher-order finite differences). Let be QDP(d,n,k,p) the d 
times along k differentiated function Q0P (n, k, p), then 
 
QDP(0, 𝑛, 𝑘, 𝑝) = 𝑄0𝑃(𝑛, 𝑘, 𝑝) 
 

and for n  d  1 
 

QDP(𝑑, 𝑛, 𝑘, 𝑝) =
QDP(𝑑−1,𝑛−1,𝑘+1,𝑝)−QDP(𝑑−1,𝑛−1,𝑘−1,𝑝)

2
. 

At this n  d is necessary that enough values are available to build a (finite) 
difference of d-th order. Let DF(d, n, k) := QDP(d, n, k, 1/2) / Q0P(n, k, 1/2); We get 
 

𝐷𝐹(1, 𝑛, 𝑘) = −
k

n
 

 

𝐷𝐹(2, 𝑛, 𝑘) =
k2 − n

𝑛(𝑛 − 1)
 

 

𝐷𝐹(3, 𝑛, 𝑘) =
−k3 + 3kn − 2k

n(n − 1)(n − 2)
 

 

𝐷𝐹(4, 𝑛, 𝑘) =
k4 − 6k2n + 8k2 + 3n2 − 6n

n(n − 1)(n − 2)(n − 3)
 



 

𝐷𝐹(5, 𝑛, 𝑘) =
−k5 + 10k3n − 20k3 − 15kn2 + 50kn − 24k

n(n − 1)(n − 2)(n − 3)(n − 4)
 

 

𝐷𝐹(6, 𝑛, 𝑘) =
k6 − 15k4n + 40k4 + 45k2n2 − 210k2n + 184k2 − 15n3 + 90n2 − 120n

n(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)
 

 

1.1 Binomial coefficients and multiple differentiation (example matrix) 
{BinCoeffDiffMatrix} The representation of operators as matrices is often useful in 
discrete considerations. Here a matrix representation of the operator for discrete 
differentiation in form of an example matrix with high number of dimensions for 
clarification of the development: Multiplication of a 15-dimensional vector by the 
following matrix 
 

     ¦  0   1   0   0   0   0   0   0   0   0   0   0   0   0  -1 ¦ 

     ¦ -1   0   1   0   0   0   0   0   0   0   0   0   0   0   0 ¦ 

     ¦  0  -1   0   1   0   0   0   0   0   0   0   0   0   0   0 ¦ 

     ¦  0   0  -1   0   1   0   0   0   0   0   0   0   0   0   0 ¦ 

     ¦  0   0   0  -1   0   1   0   0   0   0   0   0   0   0   0 ¦ 

     ¦  0   0   0   0  -1   0   1   0   0   0   0   0   0   0   0 ¦ 

     ¦  0   0   0   0   0  -1   0   1   0   0   0   0   0   0   0 ¦ 

 := ¦  0   0   0   0   0   0  -1   0   1   0   0   0   0   0   0 ¦ * 1/2 

     ¦  0   0   0   0   0   0   0  -1   0   1   0   0   0   0   0 ¦ 

     ¦  0   0   0   0   0   0   0   0  -1   0   1   0   0   0   0 ¦ 

     ¦  0   0   0   0   0   0   0   0   0  -1   0   1   0   0   0 ¦ 

     ¦  0   0   0   0   0   0   0   0   0   0  -1   0   1   0   0 ¦ 

     ¦  0   0   0   0   0   0   0   0   0   0   0  -1   0   1   0 ¦ 

     ¦  0   0   0   0   0   0   0   0   0   0   0   0  -1   0   1 ¦ 

     ¦  1   0   0   0   0   0   0   0   0   0   0   0   0  -1   0 ¦ 

 

means first order discrete differentiation "along" the index k of the vector components 
(calculation of the finite first order difference - the shift dk of the index k is 2, therefore 

division by 2). Multiplication by the n-ten power ^n of this matrix yields n-th order 
discrete differentiation (formation of the finite n-th order difference). For example 
means multiplication by 
 

     ¦ -20   0   15    0   -6    0    1    0    0    1    0   -6    0   15    0  ¦ 

     ¦  0   -20   0   15    0   -6    0    1    0    0    1    0   -6    0   15  ¦ 

     ¦ 15    0   -20   0   15    0   -6    0    1    0    0    1    0   -6    0  ¦ 

     ¦  0   15    0   -20   0   15    0   -6    0    1    0    0    1    0   -6  ¦ 

     ¦ -6    0   15    0   -20   0   15    0   -6    0    1    0    0    1    0  ¦ 

     ¦  0   -6    0   15    0   -20   0   15    0   -6    0    1    0    0    1  ¦ 

 6   ¦  1    0   -6    0   15    0   -20   0   15    0   -6    0    1    0    0  ¦ 

  = ¦  0    1    0   -6    0   15    0   -20   0   15    0   -6    0    1    0  ¦ * 1/64 

     ¦  0    0    1    0   -6    0   15    0   -20   0   15    0   -6    0    1  ¦ 

     ¦  1    0    0    1    0   -6    0   15    0   -20   0   15    0   -6    0  ¦ 

     ¦  0    1    0    0    1    0   -6    0   15    0   -20   0   15    0   -6  ¦ 

     ¦ -6    0    1    0    0    1    0   -6    0   15    0   -20   0   15    0  ¦ 

     ¦  0   -6    0    1    0    0    1    0   -6    0   15    0   -20   0   15  ¦ 

     ¦ 15    0   -6    0    1    0    0    1    0   -6    0   15    0   -20   0  ¦ 

     ¦  0   15    0   -6    0    1    0    0    1    0   -6    0   15    0   -20 ¦ 

 

6-th order discrete Differentiation resp. calculation of the finite 6-th order difference. 

The rows resp. columns of the matrix ^n contain the binomial coefficients, divided 
by 2^n, in this example the numbers 6!/(k!·(6 - k)!·2^6) = Q0(6, 2k-6). 

7 Special differences 
 
horizontal (along localization): 

𝑄0(𝑛, 𝑘 + 2) − 𝑄0(𝑛, 𝑘) = 2 QDP(1, 𝑛 + 1, 𝑘 + 1,
1

2
) = 2 𝑄1(𝑛 + 1, 𝑘 + 1)

=
−2(𝑘 + 1)

𝑛 + 1
 𝑄0(𝑛 + 1, 𝑘 + 1) 

vertical (along time): 
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𝑄0(𝑛 + 2, 𝑘) − 𝑄0(𝑛, 𝑘) =
𝑘2 − 𝑛 − 2

(𝑛 + 2)(𝑛 + 1)
 𝑄0(𝑛 + 2, 𝑘) 

 
Correspondence in the middle: 

𝑄1(𝑛 + 1,1) = 𝑄0(𝑛 + 2,0) − 𝑄0(𝑛, 0) =
1

2
(𝑄0(𝑛, 2) − 𝑄0(𝑛, 0)) 

7.1 Schrödinger discretely 

𝑄0(𝑛, 𝑘 − 2) − 2 𝑄0(𝑛, 𝑘) + 𝑄0(𝑛, 𝑘 + 2)  = 4 QDP(2, 𝑛 + 2, 𝑘,
1

2
)

=  4 (𝑄0(𝑛 + 2, 𝑘) − 𝑄0(𝑛, 𝑘)) 

𝑄1(𝑛, 𝑘 − 2) − 2 𝑄1(𝑛, 𝑘) + 𝑄1(𝑛, 𝑘 + 2) = 4 QDP(3, 𝑛 + 2, 𝑘,
1

2
)

= 4 (𝑄1(𝑛 + 2, 𝑘) − 𝑄1(𝑛, 𝑘)) 

---

 

Remark: Relation of the discrete second derivative of Q0(n-2,k) to Q0(n,k): 

𝑄0(𝑛 − 2, 𝑘 − 2) − 2 𝑄0(𝑛 − 2, 𝑘) + 𝑄0(𝑛 − 2, 𝑘 + 2)  = 𝑄0(𝑛, 𝑘)
4(𝑘2 − 𝑛)

𝑛(𝑛 − 1)
 

8 Scalar products 

8.1 horizontal 

∑ 𝑄0(𝑚, 2𝑘) 𝑄0(𝑛, 2𝑘 + 𝑗)  =  𝑄0(𝑚 + 𝑛, 𝑗)

𝑚 2⁄

𝑘=−𝑚 2⁄

 

∑ 𝑄0(𝑛, 2𝑘)2  =  𝑄0(2𝑛, 0)

𝑛 2⁄

𝑘=−𝑛 2⁄

 

∑ 𝑄1(𝑚, 2𝑘) 𝑄1(𝑛, 2𝑘)  =  𝑄1(𝑚 + 𝑛 − 1, −1)  =  −𝑄2𝑍(𝑚 + 𝑛)

𝑚 2⁄

𝑘=−𝑚 2⁄

 

 

2 ∑ (2𝑘)2

𝑛 2⁄

𝑘=−𝑛 2⁄

 𝑄0(𝑛, 2𝑘)2 − 0.5 ∑ 𝑄0(𝑛 − 1,2𝑘)2

(𝑛−1) 2⁄

𝑘=−(𝑛+1) 2⁄

= 𝑛 𝑄0(2𝑛 − 2,0) 

8.2 vertical 

∑ ∑ 𝑄1(𝑛, 2𝑘) 𝑄1(2𝑗 − 𝑛, 2𝑘) = −(2𝑗 − 1) 𝑄2𝑍(2𝑗) = 𝑄0𝑍(2𝑗)𝑛 2⁄
𝑘=−𝑛 2⁄

2𝑗−1
𝑛=1     {skahove}  

∑ 𝑄2𝑍(2𝑘) 𝑄2𝑍(2𝑛 − 2𝑘) = (∑ 𝑄2𝑍(2𝑘) 𝑄2𝑍(2𝑛 − 2𝑘)𝑛
𝑘=1 )𝑛

𝑘=0  + 𝑄2𝑍(2𝑛)  =  0 . 

∑ (∑ 𝑄2𝑍(2𝑗)𝑘
𝑗=0 )(∑ 𝑄2𝑍(2𝑗)𝑛−𝑘

𝑗=0 )𝑛
𝑘=0  =  ∑ 𝑄0𝑍(2𝑘) 𝑄0𝑍(2𝑛 − 2𝑘)𝑛

𝑘=0  =  1  . 

8.3 Orthogonality after multiple discrete differentiation (analogously to 
Hermite polynomials) 

{HermPolDiscrete} 

Let be d,l  n. 
We define the weighted scalar product QSP by 
 

QSP(𝑑, 𝑙, 𝑛, 𝑝):= ∑
1

𝑄0𝑃(𝑛,2𝑘,𝑝)

𝑛 2⁄
𝑘=−𝑛 2⁄  QDP(𝑑, 𝑛, 2𝑘, 𝑝) QDP(𝑙, 𝑛, 2𝑘, 𝑝). 
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Then for dl is valid: 𝑄𝑆𝑃(𝑑, 𝑙, 𝑛, 𝑝) = 0 (i.e. orthogonality) and otherwise 
 

𝑄𝑆𝑃(𝑑, 𝑑, 𝑛, 𝑝) =
1

2𝑛(4𝑝(1 − 𝑝))
𝑑
𝑄0(𝑛, 𝑛 − 2𝑑)

=
1

𝑝2𝑑−𝑛4𝑑𝑄0𝑃(𝑛, 𝑛 − 2𝑑, 𝑝)
 

particularly 

𝑄𝑆𝑃 (𝑑, 𝑑, 𝑛,
1

2
) =

1

2𝑛𝑄0(𝑛, 𝑛 − 2𝑑)
 

 
The denominator in the last expression corresponds to the number of the way 
possibilities from point (0,0) to point (n,n-2d) in the Q0-triangle. 

9 Sums 

 𝑄0𝑍(2𝑛) = ∑ 𝑄2𝑍(2𝑚)

𝑛

𝑚=0

= 1 + ∑ 𝑄2𝑍(2𝑚)

𝑛

𝑚=1

=  2 ∑ 𝑄1(2𝑛, 2𝑘)

−1

𝑘=−𝑛

 

10 Moments 

10.1 vertical 
∑ 𝑄0𝑍(2𝑚)𝑛

𝑚=0  

(2𝑛 + 1) 𝑄0𝑍(2𝑛)
 =

∑ 𝑄0𝑍(2𝑚)𝑛−1
𝑚=0  

2𝑛 𝑄0𝑍(2𝑛)
 =  

−𝑄0𝑍(2𝑛)

(2𝑛 − 1) 𝑄2𝑍(2𝑛)
 =

3∑ 2𝑚 𝑄0𝑍(2𝑚)𝑛
𝑚=0

2𝑛(2𝑛 + 1) 𝑄0𝑍(2𝑛)
 

=  1 

10.2 horizontal  

− ∑  𝑄1(2𝑛 , 2𝑘 ) 2𝑘 =  − ∑ 𝑄1(2𝑛 + 1 , 2𝑘 − 1) (2𝑘 − 1)  =  1

𝑛+1

𝑘=−𝑛

𝑛

𝑘=−𝑛

 

∑ 2𝑘 𝑄0(2𝑛, 2𝑘) = 

𝑛

𝑘=0

𝑛 𝑄0𝑍(2𝑛) 

2 ∑(2𝑘)2

𝑛 2⁄

𝑘=0

 𝑄0(𝑛, 2𝑘) =  4 ∑(4𝑘)2

𝑛 4⁄

𝑘=0

 𝑄0(𝑛, 4𝑘) =  𝑛 

 

∑ (2𝑘)2

0

𝑘=−𝑛

 𝑄1(2𝑛, 2𝑘) =  2𝑛 𝑄0𝑍(𝑛) 

∑ (2𝑘)3

0

𝑘=−𝑛

 𝑄1(2𝑛, 2𝑘) =  1 − 3 𝑛 

10.2.1 relative to the border 

∑ (2𝑘 + 𝑛)2 𝑄0(𝑛, 2𝑘) =  𝑛(𝑛 + 1)

𝑛 2⁄

𝑘=−𝑛 2⁄

 

∑ (2𝑘 − 𝑛)2 𝑄1(𝑛, 2𝑘) =  2𝑛

𝑛 2⁄

𝑘=−𝑛 2⁄

 

11 Sums and moments for variable p 
This chapter contains some elementary formulae for variably p (and n>0). 



 
The first finite difference (discrete derivative) of Q0P is 
 

𝑄1𝑃(𝑛, 𝑘, 𝑝): =
𝑄0𝑃(𝑛 − 1, 𝑘 + 1, 𝑝) − 𝑄0𝑃(𝑛 − 1, 𝑘 − 1, 𝑝)

2
 

11.1 Sums 

∑ 𝑄0𝑃(𝑛, 2𝑘, 𝑝) = 1

𝑛 2⁄

𝑘=−𝑛 2⁄

 

∑ 𝑄1𝑃(𝑛, 2𝑘, 𝑝) = 0

𝑛 2⁄

𝑘=−𝑛 2⁄

 

11.2 Deviation relative to the border 
In the border the probabilities p and 1-p are very different. With p->0 also v->0 (low 
temperature). 

∑ (𝑛 + 2𝑘) 𝑄0𝑃(𝑛, 2𝑘, 𝑝) = 2np

𝑛 2⁄

𝑘=−𝑛 2⁄

 

∑ (−𝑛 − 2𝑘) 𝑄1𝑃(𝑛, 2𝑘, 𝑝) = 1

𝑛 2⁄

𝑘=−𝑛 2⁄

 

11.3 Deviation relative to the origin 
In the center the probabilities p and 1-p are nearly equal, i.e. p-> 1/2 and with that v-> 
C (the borderline case p=1/2 resp. v=C is represented by Q0 and Q1). 

∑ (2𝑘) 𝑄0𝑃(𝑛, 2𝑘, 𝑝) = 2np − 𝑛 = 𝑛(2𝑝 − 1)

𝑛 2⁄

𝑘=−𝑛 2⁄

 

∑ (−2𝑘) 𝑄1𝑃(𝑛, 2𝑘, 𝑝) = 1

𝑛 2⁄

𝑘=−𝑛 2⁄

 

 

12 Analytic representations 
Let be 

𝑄0𝐸(𝑛, 𝑘): = √
2

𝜋 𝑛
 𝑒−𝑘2  ⁄ (2𝑛)  

𝑄1𝐸(𝑛, 𝑘): = − 
𝑘

𝑛
 𝑄0𝐸(𝑛, 𝑘) 

i.e. 

𝑄1𝐸(𝑛, 𝑘) =  
𝜕

𝜕𝑘
 𝑄0𝐸(𝑛, 𝑘) 

 

then is valid for every sequence  (kn) with (kn)^3/n^20 für n   (p. 80 [likr]) 
 

lim
𝑛→∞

 [
𝑄0𝐸(𝑛, 𝑘𝑛)

𝑄0(𝑛, 𝑘𝑛)
,
𝑄1𝐸(𝑛, 𝑘𝑛)

𝑄1(𝑛, 𝑘𝑛)
]  =  [1, 1] 
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Again tested approximation: For |k/n| << 1  (for example up to n=100 for |k/n| < 0.2) 
the function Q0(n,k)=Q0P(n,k,0.5) is related to the normal distribution: 
 

𝑄0(𝑛, 𝑘 ) 𝑄⁄ 0𝐸(𝑛, 𝑘) = 𝑄0(𝑛, 𝑘 ) ((√
2

𝑛𝜋
)𝑒

(−
𝑘2

2𝑛
)
)⁄ → 1 

for larger |k/n| this quotient is first decreasing, then invalid. 

12.1 Schrödinger analytically 
𝜕2

𝜕𝑘2
 𝑄0𝐸(𝑛, 𝑘)  =  2 

𝜕

𝜕𝑛
 𝑄0𝐸 (𝑛, 𝑘)  =  

𝑘2 − 𝑛

𝑛2
 𝑄0𝐸 (𝑛, 𝑘) 

 

𝜕2

𝜕𝑘2
 𝑄1𝐸(𝑛, 𝑘)  =  2 

𝜕

𝜕𝑛
 𝑄1𝐸 (𝑛, 𝑘)  =  

𝑘2 − 3𝑛

𝑛2
 𝑄1𝐸 (𝑛, 𝑘) 

 

[
𝜕

𝜕𝑘
]
 2𝑗

𝑄0𝐸(𝑛, 𝑘)  =  2𝑗  [
𝜕

𝜕𝑛
]
 𝑗

 𝑄0𝐸(𝑛, 𝑘) 

 

[
𝜕

𝜕𝑘
]
 2𝑗

𝑄1𝐸(𝑛, 𝑘)  =  2𝑗  [
𝜕

𝜕𝑛
]
 𝑗

 𝑄1𝐸(𝑛, 𝑘) 

12.2 Behavior for n-> inf; Dirac delta-function 
{DiracDeltaFu} It is 

∫
𝑄0𝐸(𝑛, 𝑘)

2
 dk = 1

∞

−∞

 

The behavior for n can be illustrated by a n proportional scale fitting, i.e. by a 
horizontal compression and a vertical stretching by respectively the factor n. This 
doesn't touch the value of the integral: 

∫
𝑛 𝑄0𝐸(𝑛,nk)

2
 dk = ∫ √

𝑛

2𝜋
  𝑒−𝑘2𝑛 2⁄  dk = 1

∞

−∞

∞

−∞

 

For n therefore the function f(x) = n Q0E(n, nx) / 2 converges towards the Dirac 
delta-function. 

1.2 Multiple differentiation and Hermite polynomials 
{HermPol} The Hermite polynomials Hn(x) are (except sign) special cases of pre-
factors resulting from multiple differentiation: 

𝐻𝑛(𝑥) = (−1)𝑛
[
𝜕
𝜕𝑥

]
𝑛

𝑄0𝐸(
1
2 , 𝑥)

𝑄0𝐸(
1
2 , 𝑥)

= (−1)𝑛
[
𝜕
𝜕𝑥

]
𝑛

𝑄0𝐸(100,10𝑥√2)

𝑄0𝐸(100,10𝑥√2)
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