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Abstract

We have shown that only an a priori finite mathematical model can
have an exact equivalent in physical reality [11] and that discrete con-
siderations are adequate to get a deeper understanding of basic physi-
cal principles [8]. Because this leads to difficult combinatorics we have
developed open-ended software [10] which is designed as general help
to handle discrete numerical spaces in the form of multidimensional
numerical lattices and to test algorithms on them. It is possible to
define many algorithms (”algadd” algorithms) by using only a table.
The aim is to find algorithms whose results correspond to the results of
physical experiments better and better. This paper gives an overview
of the software and shows examples of its usage.
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1 Introduction

We have shown [11] that only an a priori finite mathematical model can have
an exact equivalent in physical reality. This means that it implies an only
finite number of basic arithmetic operations on an a priori finite numerical
space1 which can be represented without using irrational numbers.

Up to now there is not much experience in this area: Important physical
equations are defined on continuous (a priori infinite) sets and often written
as partial differential equations. If we want to find the natural finite basis of
them, first we have to replace differential calculus by finite-difference calculus.
This can soon lead to difficult combinatorics, especially in case of interac-
tions across several dimensions. But increasing performance of computers
offers new possibilities. The mentioned numerical space can be represented
by finite dimensional numerical lattices (finite dimensional point lattices with
numbers resp. quantities assigned to every point) which can be handled ad-
equately by a computer. So we developed as help software [10] for handling
numerical lattices and for studying the results of numerical algorithms on
them.

2 Software architecture

The software is written in C++ and open-ended. The file interface is clear
and all data generated by the user (lattices, definitions, comments, also indi-
vidual configuration) are by default stored in the program directory, without
spread and in readable ASCII format. Possibilities to generate statistics like
sums of the (squared) quantities in selectable lattice subspaces or subsets are
available, with graphical representation. We will not deepen this here but
concentrate on the basics, especially on the lattice characteristics and on the
algorithm interface.

2.1 Numerical lattices

We use the term numerical lattice or shortly lattice for a finite dimensional
point lattice in which a complex number resp. quantity is assigned to every

1Nevertheless both can increase without boundary when time increases without bound-
ary (infinite potential).
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point. A lattice-family is an indexed set of these lattices. It is the central
object which is handled by the software. All points resp. quantities in
it are addressed by integer coordinates: The lattice-index l, the time-like
coordinate n and 30 free coordinates k1, ..., k30.2

The lattice-index. The coordinate l is the lattice-index, i.e. the index of
the lattice within the lattice-family which is under consideration. This allows
to combine an only by computer hardware limited number of multidimen-
sional lattices, each having its individual name in form of its lattice-index
l. The reservation of l for this purpose can e.g. facilitate the discrete im-
plementation of physical equations which connect different kinds of physical
quantities (quantities with different names). For implementation of complex
algorithms it can be also helpful to assign different l to different components
of a vector as shown in 3.4 and [9]. By combining many different l resp.
lattices it is possible to study results of algorithms with total complexity
far beyond reach of human brain. (Initially, however, the situation may be
not too complicated and it is recommendable to work with as few lattices as
possible.)

The time-like coordinate. The coordinate n is reserved for time-like
behavior. This means that every algorithm which uses lattice quantities
whose n is smaller or equal to n0 (n <= n0) should only influence quantities
whose n is greater than n0 (n > n0).

The free coordinates. Additionally there are 30 free coordinates which
are simply accessible by their number 1, ..., 30 and we will call them k1, ..., k30
subsequently. In most cases only a part of them is used. Unused coordinates
are by default 0 and it is not necessary to take care about them.

Denote the lattice quantity at the point with coordinates (l, n, k1, k2, ..., k30)
by q(l, n, k1, k2, ..., k30). It can be a complex rational or floating point num-
ber. Initially all quantities are by default 0. This convention (that the quan-
tity at every unused coordinate is 0) allows the handling of the lattice(s) by a
computer and is also adequate because lattices (with distinguishable points)
exist not a priori but have to be created by execution of branching algorithms

2The number of free coordinates resp. dimensions could be greater and is only restricted
by computer hardware.
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(cf. 2.2.1). Internally the lattices are organized as lattice family in a map
(an associative container of the C++ standard template library) which stores
all non-zero quantities. It is ordered by a structure which contains the 32
integer coordinates and n has the highest priority.

As shown in Fig. 1 all lattice quantities can be displayed and edited in a table
which contains a selectable two-dimensional subset. Consequent working
with rational numbers can preserve exactness. Of course clearness may be
lost in case of rational numbers with many digits. If there are more than
10 necessary digits for numerator or denominator of a rational number, the
implemented arithmetic automatically converts it to a floating point number.
The possibility of using complex numbers (with non-zero imaginary part) is
offered as bridge to current concepts and should make usage more convenient.
Later complex numbers can be replaced as shown in Fig. 9, e.g. for detailed
combinatorial and graph theoretical studies.

Figure 1: Editing lattices. The left table determines the lattice and its part
which can be edited in the right table. Here lattice l = 0 is displayed,
the negative y-coordinate (the vertically downwards increasing row number)
corresponds to the time-like coordinate n, the horizontal x-coordinate (the
column number) corresponds to the coordinate k1. The lattice contains the
sequence of symmetric binomial distributions resulting e.g. from iterations
of algadd-random which is defined by the table in Fig. 2.
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2.2 Algorithms

2.2.1 General guidelines

It is important to realize that in physical nature the number of distinguish-
able possibilities of experimental results is finite at given time [11] and is
increasing only together with time. Furthermore physical laws are by defi-
nition stable, i.e. they are valid iteratively at every time. Therefore nature
conform software algorithms must be iterative in time and must operate on
discrete spaces resp. numerical lattices, starting with a finite number of dif-
ferent (lattice) quantities and producing an increasing number of new quan-
tities during their iteration. Furthermore the results of [8] suggest that these
algorithms should generate branching loops, i.e. iteratively in the course
of time (iteratively after a finite number of iterations of the algorithm) the
quantities should have effect on quantities at other new coordinates3 which
in turn later have effect backwards.

We now focus our interest on the algorithm interface.

2.2.2 User algorithms

Of course the user can develop algorithms by writing code according to own
ideas. At this it is not necessary to understand all details of the software
architecture, it is also possible to use the readable ASCII file format of saved
data as interface.

2.2.3 Algadd algorithms

The software is already prepared for a large class of algorithms which we call
algadd-algorithms. It is possible to define these algorithms without writing
code. This is done by usage of a table with several entries as shown in Fig. 2.
The in C++ written open-ended software [10] is designed for editing of nu-
merical lattices and for generation of statistics like sums over the absolute
or squared quantities of subspaces, with graphical representation. Using the
ASCII file format of saved data as interface or writing own code the user
can check the results of own algorithms. Additionally it is possible to define

3More exactly: Effect on quantities at coordinates which are different resp. separated
not only in time coordinate from up to now used (resp. created) coordinates. In physical
nature this separation can be a measurable potential barrier.
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algorithms without writing code. This is done by usage of a table with sev-
eral entries. Every entry defines a propagation between two lattices in form
of an addition from the first (the source lattice with index l) to the second
(the destination lattice with index ldest). The strength of the propagation
is determined by the propagator 4 p: During every iteration of the algorithm
all non-zero quantities of the source lattice with n = nlast, i.e. quantities at
points with maximal coordinate n before iteration, are added to shifted lo-
cations with n = nlast + 1 within the destination lattice after multiplication
by p.

Source and destination lattices and the multidimensional relative shift resp.
offset (dk1, ..., dk30) are selectable using integer numbers, the propagator p
can be a complex number, if desired. Per iteration of algadd only quantities
with n = nlast are used and influence only new quantities with n = nlast+1.
Because of this convention every existing quantity remains untouched and
can be later used for analysis of development. If initially nlast = 0 like in
chapter 3, then n simply is the number of the iteration which has generated
the associated quantity. For the purpose of clarity we will summarize this
and give a compact definition:

Definition (algadd). An algadd algorithm, shortly algadd, is an iter-
ative algorithm which operates on the in 2.1 defined lattice-family. Let
nlast0 resp. nlast1 denote the maximal time-like coordinate n of all lat-
tice points with non-zero quantities before resp. after the iteration and let
M := {0, 1, 2, ..., jmax} denote the set of all entry numbers in the algadd table
as shown partially in Fig. 2 (in the current version jmax = 255). For j ∈ M
let lj and ldestj denote indices of source and destination lattices of entry j,
pj its propagator and dk1j, dk2j, ..., dk30j its coordinate offsets. Then per
iteration of algadd the following additions are done:

q(ldestj, nlast0 + 1, k1 + dk1j, k2 + dk2j, ..., k30 + dk30j)

= q(ldestj, nlast0 + 1, k1 + dk1j, k2 + dk2j, ..., k30 + dk30j)

+ pj q(lj, nlast0, k1, k2 , ..., k30) for all j ∈ M.

4There is a relationship to the Feynman propagator, but p is elementary because it
propagates along minimal dn (resp. dt) and every p represents with its entry exactly one
component of the total propagation (which can have many components). Furthermore it
does not propagate to n < nlast resp. past - according to the definition of the word past.
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Result after the iteration. If the iteration has not created new non-zero
quantities, then nlast1 = nlast0 and this and also further iterations will
have no effect. If, however, new non-zero quantities have been created, then
nlast1 = nlast0 + 1 and after the iteration holds:

q(l, nlast1, k1, k2, ..., k30)

=
∑

j∈M∧ldestj=l

pj q(lj, nlast1 − 1, k1− dk1j, k2− dk2j, ..., k30− dk30j).

Figure 2: The algadd table. Only the entries resp. columns with non-zero
p (here entries 0 and 1) cause some addition, the other are empty and not
used. Not shown entries are empty, not shown rows contain zero offsets.
This also holds for the other examples.

In this table the algorithm algadd-random is defined, n iterations of it gener-
ate the symmetric binomial distribution resp. probability distribution which
results from a symmetric Bernoulli random walk with n steps. The only
non-zero component of the offsets (dk1, ..., dk30) is dk1. It determines the
direction of the steps so that a binomial distribution of k1 results (Fig. 1 and
Fig. 3). During every iteration all quantities of lattice l = 0 with coordinates
(0, nlast, k1, k2, ..., k30) are added to those of lattice ldest = 0 with coor-
dinates (0, nlast + 1, k1 − 1, k2, ...k30) and (0, nlast + 1, k1 + 1, k2, ..., k30)
after multiplication by p = 1/2. At this nlast denotes the maximal time-
like coordinate n of all lattice points which have non-zero quantities before
iteration.
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3 Some exemplary applications

Now we will describe some examples of algadd algorithms and their results.
Before their iteration all lattice quantities are zero except in the origin where
the quantity is 1. So the initial conditions are:

q(0, 0, 0, 0, 0, ..., 0) = 1 else q(l, n, k1, k2, k3, ..., k30) = 0.

3.1 Simple random walk

The remarkable characteristics of the binomial distribution and its modifi-
cations was one of the reasons which motivated us to introduce the more
general algadd concept. The definition of algadd-random in Fig. 2 represents
the standard example, n iterations of it generate the symmetric binomial
distribution of k1 which is identical to the probability distribution resulting
from a ”simple” symmetric Bernoulli random walk with equal probabilities
p = 1/2 for steps in directions −k1 or k1. The result after 60 iterations is
shown in Fig. 3 and has the well known bell-shape.

Figure 3: The binomial distribution resulting after 60 iterations of algadd-
random. Abscissa: k1, Ordinate: q(0, 60, k1, 0, 0, 0, ..., 0).
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3.2 Finite differences

It is easy to generate finite differences along k1 by algadd-fdiff.

Figure 4: Definition of algadd-fdiff which generates finite differences along
coordinate k1. In comparison to the definition of algadd-random in Fig. 2
only the sign of the propagator p in entry 1 is exchanged.

Figure 5: 6-th order finite difference of the binomial distribution shown in
Fig. 3. Result after 6 iterations of algadd-fdiff and 60 iterations of algadd-
random. Abscissa: k1, Ordinate: q(0, 66, k1, 0, 0, 0, ..., 0).
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Fig. 5 shows the 6-th order finite difference of the binomial distribution5 in
Fig. 3, generated by 6 iterations of algadd-fdiff and 60 iterations of algadd-
random. At this the in Fig. 5 shown result in n = 66 is only dependent on the
number of iterations of algadd-fdiff and algadd-random, not on their order
as shown in Fig. 6 and Fig. 7.

Figure 6: Initially generated finite differences (grayscale graph). The
grayscale graph illustrates the lattice quantities in dependence of two inde-
pendent coordinates. Here it shows the development of lattice l = 0 during
6 initial iterations of algadd-fdiff followed by 60 iterations of algadd-random.
The vertical coordinate is n (the number of iterations) and the horizontal co-
ordinate is k1. The grayscale represents the quantity q(0, n, k1, 0, 0, 0, ..., 0).
The brighter the color, the more positive is the corresponding quantity. Here
the most negative quantity is −0.5 and represented by dark gray, the most
positive quantity is 1.0 and represented by white. The scaling is automati-
cally adapted that frequency of used different shades is approximately equal
to maximize the information of the picture.

5Recall that the differentiation of the binomial distribution (resp. of its analytic border-
line case which is proportional to the function e−(x/a)2 , where a is a constant) is important
e.g. for generation of the eigenfunctions of the harmonic oscillator [1] [12].
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Figure 7: In-between generated finite differences. The result in n = 66 is the
same as in Fig. 6 and in detail shown in Fig. 5. It is only dependent on the
number of iterations of algadd-fdiff and algadd-random, not on their order.
Here the 6 iterations of algadd-fdiff are not done initially but in between after
every 9 iterations of algadd-random. Abscissa: k1, Ordinate: n, grayscale:
q(0, n, k1, 0, 0, 0, ..., 0).
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3.3 Discrete representations of analytic functions

First we must not forget that analytic functions with infinite power series
cannot have an (exact) equivalent in physical reality [11]. But they can be
helpful in many cases, particularly for approximative considerations. There-
fore they are commonly used and it is appropriate to show bridges. For
example it is possible to generate discrete representations6 of standard wave
functions like sin and cos by very concise algadd definitions. The most evi-
dent possibility for this is the usage of a complex propagator p with |p| = 1
which causes a rotation, see Fig. 8 and Fig. 9. Though the rotation angle
could be arbitrarily small we chose it big enough to make gradation clearly
visible, especially in the right graph in Fig. 9. The second algadd definition
in Fig. 9 also demonstrates the replacement of complex numbers by 2 × 2
matrices. This can be helpful for advanced graph theoretical considerations.

Figure 8: Discrete representation of sin, cos. Both tables contain equivalent
definitions of algadd-sincos. Every iteration of it results in the multiplication
by a complex number which causes a rotation. 40/401i means (40/401)i.
The graph shows the development in dependence of the iteration number n.
Abscissa: n, Ordinate: real resp. imaginary part of q(0, n, 0, 0, 0, 0, ..., 0).

6representations which have a discrete but arbitrarily fine subdivided range of values
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Figure 9: Complex numbers as 2×2 matrices. The algadd defined by the up-
per left table causes a rotation like in Fig. 8, but with greater angle (approx.
π/3). The graphs show the development during 6 iterations, the left and
middle graphs show the real part and imaginary part in dependence of the
iteration number, the right graph shows the imaginary part in dependence
of the real part. The algadd defined by the lower left table causes analogous
graphs, but the imaginary part is replaced by an additional lattice with in-
dex l = 1 and the multiplication by a complex number is replaced by the
multiplication by a rational 2× 2 rotation matrix.
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3.4 Discretization of differential equations

Above we have chosen simple examples to introduce the algadd concept. Now
follows a nontrivial example. In 3.2 we have seen that the generation of finite
differences is a standard application of algadd algorithms. So it is reason-
able to use this for discretization of approved (partial) differential equations
in mathematical physics. Because of their elementary importance and their
combinatorial potential we chose the vacuum Maxwell equations and con-
verted them into finite-difference equations. Fig. 10 shows a corresponding
algadd definition and Fig. 11 shows one result, [9] contains a more detailed
treatment of the subject.

Figure 10: Maxwell equations discretized. This algadd definition shows a dis-
crete version of the vacuum Maxwell equations. It uses 6 four-dimensional
lattices with indices l ∈ {0, 1, 2, 3, 4, 5} for representation of the in [9] defined
field components Êx, Êy, Êz, B̂x, B̂y, B̂z. Apart from the right 6 copying en-
tries the absolute value of the propagator p is

√
α = 0.085424542921 which

is the square root of the fine structure constant.

Figure 11: The first wave. Short term development of lattice l = 0 during
the first iterations of the in Fig. 10 defined algadd algorithm. Abscissa: n,
Ordinate: q(0, n, 0, 0, 0, 0, ..., 0). It is not trivial that the second maximum
at n = 28 has nearly the initial quantity 1.
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4 Discussion

The motivation for the algadd algorithm scheme arises from the fact that it
is simple and nevertheless very general. We see in the exemplary definition
of algadd-random in Fig. 2 that the propagator p can have the meaning of
the probability of a step in one direction. This can be used to study (su-
perpositions of) random walks which play a fundamental role in (quantum)
physics. For example the second order finite difference along the location
coordinate k of a symmetric Bernoulli random walk is equal to the first or-
der finite difference along the time-like coordinate n like in the Schroedinger
equation as mentioned in [8]. This is also valid for linear combinations of
these random walks. Negative combinations can lead to finite differences as
shown in 3.2. For quantum theoretical considerations it is also useful that
p can represent a complex probability amplitude because it is not restricted
to the interval [0, 1]. Furthermore the examples in chapter 3.3 show that it
is easy to generate discrete representations of periodic functions which are
traditionally used in mathematical physics. But it should be annotated, that
these examples don’t satisfy the criteria of 2.2.1. They are not time conform
because their defining tables in Fig. 8 and Fig. 9 contain only zero offsets
(i.e. (dk1, dk2, ..., dk30) = (0, 0, ..., 0) ) and with that no branching entries.
A restriction of the algadd scheme is the constancy of the propagator p.
In physical reality p doesn’t need to be constant. Even if it is interpreted
as an mean value (like a probability), it can change (systematically) during
a sequence of iterations. It would be possible to expand the scheme and
to take this into consideration, e.g. to define p as a function of previous
lattice quantities. Without concrete information, however, this seems pre-
mature. Already now the algadd scheme allows it to make p dependent on
last individual history of a random walk: For example in case of two possi-
ble directions v−1 and v1 per step we can use different lattices l−1 and l1 as
destination for steps in these directions and define different propagators p−1

and p1 in those entries of the algadd table which use l−1 and l1 as source
lattices. The result is simply that the next p is dependent on the direction of
the previous step. It is possible to expand this method to more steps back-
wards, but we will not deepen this here. The above examples demonstrate
the adaptability of the algadd concept and that it can be used to introduce
consequent discrete considerations in mathematical physics.
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5 Conclusions

We have seen that many means for the study of algorithms on numerical
lattices are provided and that it is possible to define a large class of algorithms
without writing code, already in the current stage. The architecture of the
software is open-ended. It is possible that we gain new surprising information
[9] when we use it to check our ideas. Of course we have to ask the right
questions.
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