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Abstract

The function γ(x) = 1√
1−x2

plays an important role in mathemat-

ical physics, e.g. as factor for relativistic time dilation in case of
x = β with β = v

c or β = pc
E . Due to former considerations [15]

it is reasonable to study the power series expansion of γ(x). Here
its relationship to the binomial distribution is shown, especially the
fact, that the summands of the power series correspond to the return
probabilities to the starting point (local coordinates, configuration or
state) of a Bernoulli random walk. So γ(x) and with that also proper
time is proportional to the sum of the return probabilities. In case of
x = 1 or v = c the random walk is symmetric. Random walks with
absorbing barriers are introduced in the appendix. Here essentially
the basic mathematical facts are shown and references are given, most
interpretation is left to the reader.
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1 Introduction

It has been shown [15], that the (measurable) result data vector of a physical
experiment (with finite duration) can be calculated from the (measurable)
initial data vector by combining a finite number of basic arithmetic opera-
tions (addition, subtraction, multiplication, division). This doesn’t contra-
dict the fact, that many analytical functions with infinite power series expan-
sions can successfully predict (approximative) experimental results: They are
only successful in case of convergence, i.e. in case of convergence of the par-
tial sum sequence of the corresponding power series expansion. These partial
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The connection of proper time and return probabilities

sums can be calculated by finitely many basic arithmetical operations and
the result is arbitrarily near to the one of the function. So there always can
be an exact partial sum and an approximative function result without chance
for experimental distinction. However, the study of partial sums is one pos-
sibility to learn more about the nature of the underlying (finite) physical
process - even in case of missing convergence.
Here we study the function

γ : ] − 1, 1[ → IR, γ(x) =
1√

1 − x2
(1)

which is frequently used in mathematical physics, e.g. as factor for relativistic
time dilation in case of x = β with β = v

c
or β = pc

E
. We investigate the

power series representation of γ(x) and show its (simple?) relationship to
the binomial distribution, which plays an important role in nature, often in
not obvious way [18]-[48]1. In the appendix we look also at 1

γ(x)
.

2 The connection of proper time and return

probabilities

2.1 The binomial series

In case of α ∈ ZZ
∗ = {j ∈ ZZ|j ≥ 0} the function

f̂α : C → C f̂α(z) = (1 + z)α

has a finite power series expansion of the form

f̂α(z) = 1 +

(

α

1

)

zl +

(

α

2

)

z2 + ... +

(

α

α

)

zα =

α
∑

l=0

(

α

l

)

zl,

in which
(

α
l

)

are the binomial coefficients. These are defined by

(

α

0

)

= 1 and

(

α

l

)

=
α(α− 1)(α− 2)...(α− l + 1)

l!
for l ∈ ZZ

∗\{0} .

(2)

1Recall the close connection between relativistic mass increase and time dilation, espe-
cially when reading [22], in which concrete physical relevance of finite partial sums (of the
power series expansion of 1√

1−x̂
) is shown.
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The connection of proper time and return probabilities

In case of α ∈ C\ZZ
∗ and |z| < 1 we can develop the function f̂α(z) = (1+z)α

into a convergent MacLaurin series [5] [10] [11] [12]. If fα(z) denotes the
principal value of f̂α(z), which is equal to one at z = 0, we obtain

fα(0) = 1, f ′
α(0) = α, f ′′

α(0) = α(α− 1), ..., f (l)
α =

(

α

l

)

l!

from which follows the representation of fα(z) as binomial series

fα(z) =

∞
∑

l=0

(

α

l

)

zl . (3)

2.2 The power series of γ(x) = 1√
1−x2

Because of 1√
1+z

= f−1/2(z) we get with (2) and (3)

1√
1 + z

=

∞
∑

l=0

(− 1

2

l

)

zl

= 1 +
− 1

2

1
z1 +

− 1

2
· − 3

2

1 · 2 z2 +
− 1

2
· − 3

2
· − 5

2

1 · 2 · 3 z3 +
− 1

2
· − 3

2
· − 5

2
· − 7

2

1 · 2 · 3 · 4 z4 + ...

= 1 − 1

21 · 1!
z1 +

1 · 3
22 · 2!

z2 − 1 · 3 · 5
23 · 3!

z3 +
1 · 3 · 5 · 7

24 · 4!
z4 − ...

= 1 − 2!

(21 · 1!)2
z1 +

4!

(22 · 2!)2
z2 − 6!

(23 · 3!)2
z3 +

8!

(24 · 4!)2
z4 − ...

=
∞
∑

l=0

(−1)l
(2l)!

(2l · l!)2 zl

=

∞
∑

l=0

(

2l

l

) (−z

4

)l

(4)

and after substitution of z by −x2

γ(x) =
1√

1 − x2
=

∞
∑

l=0

(

2l

l

)

(x

2

)2l

. (5)

2.3 Bernoulli random walk

A Bernoulli random walk is a stochastic process generated by a sequence of
Bernoulli trials2 [2][16]. It can be interpreted as a model for the movement

2Independent trials, each one of which can have only two results, e.g. ”positive” (with
probability p) or ”negative” (with probability 1 − p).
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The connection of proper time and return probabilities

of a particle in a one-dimensional discrete state space and may be described
in the following terms: The particle moves ”randomly” along a line over a
lattice of equidistant points (”states”), which are indexed by an integer co-
ordinate k. With every trial the particle makes a step from point k to point
k + 1 with given probability p (”positive direction”) or a step from point k
to point k − 1 with probability 1 − p (”negative direction”).

For n ∈ {1, 2, 3, ...} let’s denote by Q0P (n, k, p) the probability, that the
particle is at point k after the n-th step and by Q0P (0, k, p) this proba-
bility before the first step. We assume start of movement at k = 0, so
Q0P (0, 0, p) = 1 and Q0P (0, k, p) = 0 for k 6= 0
and furthermore

Q0P (n+ 1, k, p) = p Q0P (n, k − 1, p) + (1 − p) Q0P (n, k + 1, p) . (6)

When making n trials, point k is only within reach, if n − k and n + k are
non-negative even numbers. We will presuppose this subsequently. There
are exactly

(

n
n+k

2

)

ways with n+k
2

steps in positive and n−k
2

steps in negative

direction, which lead into point k after the n-th step. They respectively have
the probability (1−p)(n−k)/2 p(n+k)/2. So the chaining of these Bernoulli trials
results into the binomial distribution

Q0P (n, k, p) =

(

n
n+k

2

)

p(n+k)/2 (1 − p)(n−k)/2 . (7)

We now look at the probabilities of return to the starting point. Because the
movement started at k = 0 these correspond to

Q0P (2n, 0, p) =

(

2n

n

)

(1 − p)n pn ,

5



The connection of proper time and return probabilities

i.e. Q0P (2n, 0, p) is the return probability after the 2n-th step3. Substitution

of p by 1−
√

1−x2

2
or 1+

√
1−x2

2
yields

Q0P (2n, 0,
1 −

√
1 − x2

2
)

= Q0P (2n, 0,
1 +

√
1 − x2

2
)

=

(

2n

n

) (

1 −
√

1 − x2

2

1 +
√

1 − x2

2

)n

=

(

2n

n

) (

x2

4

)n

=

(

2n

n

)

(x

2

)2n

(8)

and with (5) we obtain

γ(x) =
1√

1 − x2
=

∞
∑

n=0

Q0P (2n, 0,
1 −

√
1 − x2

2
)

=

∞
∑

n=0

Q0P (2n, 0,
1 +

√
1 − x2

2
) . (9)

Note, that the condition

p ∈
{

1 −
√

1 − x2

2
,
1 +

√
1 − x2

2

}

is equivalent to

4p(1 − p) = x2 . (10)

Before we continue, we should remember, that the function γ(x) can-
not have an exact equivalent in physical (past) reality, because the sum on
the right side of (9) is not finite. Furthermore the values Q0P (2n, 0, p) are
probabilities, and every expectation value calculated from probabilities has
only an average, approximative meaning. Therefore we presuppose, that the
random walk contains a sufficiently large number of steps, so that there can
be an equivalent to a finite partial sum of the right side of (9) sufficiently
close to γ(x), that the reliability of the expectation value calculated from it is
so great, that the difference between the individual (discrete4) measurement
result and the calculated value isn’t significant. With that we can summarize:

3Return is only possible after an even number of steps.
4Due to [15] the set of all possible measurement results is finite and so of course also

discrete.
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The connection of proper time and return probabilities

2.4 Theorem: Proper time proportional to the sum of
return probabilities

Let γ(x) = 1√
1−x2

represent the (approximative) time dilation factor of refer-

ence system A relative5 to reference system B. Then proper time of A relative
to B is (approximatively) proportional to the sum of the return probabilities
to the starting point of a Bernoulli random walk, in which each step is di-
rected from point6 k to k + 1 with probability p, from point k to k − 1 with
probability 1 − p and 4p(1 − p) = x2.

2.5 Case x = 1 resp. v = c

In many physical situations x = 1, especially if x = v
c

and v = c is the veloc-
ity of light resp. photons7. So the case x = 1 is extremely frequent. Why?

The above consideration (10) shows, that x = 1 corresponds to p =
1 − p = 1

2
, i.e. the probabilities p and 1 − p of positive and negative step

direction are equal. Now the reason of x = 1 resp. v = c for photons becomes
clear: At this both directions have the same chance. Nature a priori makes
no preferences.

2.5.1 Symmetric random walk

In case of x = 1 because of p = 1 − p = 1
2

the random walk is symmetric.
The accompanying probabilities are

Q0(n, k) := Q0P (n, k,
1

2
) =

(

n
n+k

2

) (

1

2

)n

. (11)

5We can assume x = v

c
if B is moving with velocity v relative to A and space-time is

flat.
6Every point can represent a state in a one-dimensional discrete state space and k the

integer index to it. Reversal of the order of the index is possible and has the same effect
as exchange of the probabilities p and 1 − p .

7Because v = c is the maximal speed of information transport, this case is also impor-
tant from information theoretical point of view.
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The connection of proper time and return probabilities

n k → −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
↓
0 1 ·20

1 1 1 ·2−1

2 1 2 1 ·2−2

3 1 3 3 1 ·2−3

4 1 4 6 4 1 ·2−4

5 1 5 10 10 5 1 ·2−5

6 1 6 15 20 15 6 1 ·2−6

...

Table 1: The first values of Q0(n, k). The return probabilities are underlined.
The representation is chosen in a way that the well known Pascal triangle
gets visible. Also the small modification in comparison with usual tables
of binomial coefficients gets clear: The definition of Q0(n, k) takes into ac-
count the symmetry. The underlined return probabilities are located in the
symmetry center and have all the same index k = 0.

2.5.2 Finite random walk - finite partial sum γ2n(x) of γ(x)

We now look again to γ(x). In case x = 1 the series (9) doesn’t converge,
i.e. the infinite sum has not even an approximative result. But anyway we
know that an infinite sum cannot have an equivalent in physical reality. So
it’s only consequent to consider finite partial sums

γ2n(x) :=

n
∑

m=0

Q0P

(

2m, 0,
1 +

√
1 − x2

2

)

of (9). γ∞(x) = γ(x), additionally for every (finite) integer n now also

γ2n(1) = γn(−1) =

n
∑

m=0

Q0P

(

2m, 0,
1

2

)

=

n
∑

m=0

Q0(2m, 0) (12)

8



The connection of proper time and return probabilities

exists. It is not difficult to find a closed form for it. From

(2n− 1)Q0(2n− 2, 0) +Q0(2n, 0) = (2n− 1)
(2n− 2)!

22n−2 (n− 1)!2
+

(2n)!

22n n!2

=
2n (2n)!

(2n)2 22n−2 (n− 1)!2
+

(2n)!

22n n!2
=

2n (2n)!

n2 22n (n− 1)!2
+

(2n)!

22n n!2

=
2n (2n)!

22n n!2
+

(2n)!

22n n!2
= (2n+ 1)

(2n)!

22n n!2

= (2n+ 1)Q0(2n, 0)

follows by induction

n
∑

m=0

Q0(2m, 0) = (2n+ 1) Q0(2n, 0)

and with (12)

γ2n(1) = (2n+ 1) Q0(2n, 0) = (2n+ 1)

(

2n

n

) (

1

2

)2n

= (2n+ 1)
(2n)!

22n n!2
(13)

In case of large n we can use the Stirling formula n! ≈ nne−n
√

2πn and

obtain Q0(2n, 0) ≈ 1√
πn

and γ2n(1) ≈
√

4n
π

. So we have gotten a closed

form for the sum (12) of the return probabilities (the sum of the underlined
values in table 1 on page 8). The results are finite even in case of x = 1 (or
v = c), because we assumed an only finite number 2n of steps. Obviously
this assumption is adequate for all natural processes with finite duration.

Comment

The model of a one-dimensional random walk has only limited validity. Ex-
tensive considerations should take into account interactions between different
reference systems and changes of the own reference system. Up to now we
don’t know enough about the exact ways of information between different
reference systems8 and about the long-term relation of their proper time.

8Example: Squared values like γ2n(1)2 ≈ 4n

π
or ζ2n(1)2 ≈ 1

πn
(cf. (23) in the appendix)

can appear because of bidirectional information exchange during observation. The familiar
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Appendix

Further research is necessary, also combinatorial and graph theoretical re-
search. The appendix demonstrates an example for possible connections of
multiple random walks.

3 Appendix

We now introduce absorbing barriers, which are drains and can be sources
of new random walks with steps in another orthogonal direction. Then we
show, that in case of an absorbing barrier in the origin after start of the walk
(and otherwise under the same the basic conditions as in theorem 2.4) the
probability of non-absorption is equivalent to 1/γ(x) =

√
1 − x2. At last we

investigate finite symmetric random walks with absorbing barrier.

3.1 Absorbing barriers

A Bernoulli random walk can have absorbing barriers. If there is an absorbing
barrier at point a and the walking particle reaches it, the particle is absorbed.
So point a is only a drain, but no (direct) source for further walks within
the same dimension9. We can get the resulting probability distribution by
subtraction of a ”shifted” distribution from (7): Let’s assume an absorbing
barrier at a > 0. We define

Pa(n, k, p) := Q0P (n, k, p) −
(

p

1 − p

)a

Q0P (n, k − 2a, p) (14)

from which follows

Pa(n+ 1, k, p) = p Pa(n, k − 1, p) + (1 − p) Pa(n, k + 1, p) , (15)

i.e. the inductive law (6) of a Bernoulli random walk holds. Additionally the
boundary condition Pa(n, a, p) = 0 is fulfilled, so that point a is only drain,
but not source10. Therefore Pa(n, k, p) represents for all values −n ≤ k ≤ a
within reach the probability, that the particle passes point k and continues

macroscopic geometrical appearance isn’t a primary thing, it’s only a consequence of a
discrete law [15]. The above considerations suggest an information theoretical approach
to this law.

9It can be source of a walk in another dimension.
10In literature at point a often the sum of absorption probabilities is listened. Here this

special treatment is not done, so that law (15) is valid.
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moving. For the particle starting at k < a the points k > a are not within
reach11.

3.1.1 Random walk with delayed absorbing barrier at k = 0

The starting coordinate k = 0 plays a special role and it is reasonable to
assume an absorbing barrier there, also because of symmetry. But if this
barrier is active from the beginning on, the particle is absorbed at once so
that the walk cannot begin and (14) has the meaningless result P0(n, k, p) =
Q0P (n, k, p) − Q0P (n, k, p) = 0. However, if there is absorption at k = 0
after the walk already has started, we get a distribution which is worth
further consideration. So let’s assume a delayed absorbing barrier at k = 0
which is activated after completion of the first step of the walk. The resulting
probability distribution is given by the absolute values of

Q1P (n, k, p) := (1 − p) Q0P (n− 1, k + 1, p) − p Q0P (n− 1, k − 1, p) (16)

which is a modification12 of (14). Q1P fulfills the boundary conditions

|Q1P (0, 0, p)| = 1, Q1P (2n, 0, p) = 0 for n ≥ 1

and the same inductive law as Q0P in (6). For n ≥ 1 a more compact form
of Q1P (n, k, p) is

Q1P (n, k, p) =
−k
n
Q0P (n, k, p) (17)

because of

11Pa(n, k, p) is negative there. In case of a simultaneous walk of two particles with
starting points 0 and 2a, in which the particle starting at 2a is the annihilating counterpart
of the other starting at 0, for k > a the absolute value |Pa(n, k, p)| can be interpreted
as probability, that the annihilating counterpart passes point k, if both particles make
simultaneously steps in opposite directions. If this is not guaranteed, there is a chance,
that a particle passes the barrier (like in the tunnel effect).

12Q1P (n, k, p) = (1 − p) P1(n − 1, k + 1, p); an absorbing barrier at k = 1 is within
reach and therefore active only from the second step on. Q1P (n, k, p) is ”centered” in this
barrier.

11
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Q1P (n, k, p) = (1 − p) Q0P (n − 1, k + 1, p) − p Q0P (n − 1, k − 1, p)

=
p(n+k)/2 (1 − p)(n−k)/2 (n − 1)!

(

n+k
2

)

!
(

n−k
2 − 1

)

!
− p(n+k)/2 (1 − p)(n−k)/2 (n − 1)!

(

n+k
2 − 1

)

!
(

n−k
2

)

!

=

(

n − k

2n

)

p(n+k)/2 (1 − p)(n−k)/2 n!
(

n+k
2

)

!
(

n−k
2

)

!
−

(

n + k

2n

)

p(n+k)/2 (1 − p)(n−k)/2 n!
(

n+k
2

)

!
(

n−k
2

)

!

=

(−k

n

)

p(n+k)/2 (1 − p)(n−k)/2 n!
(

n+k
2

)

!
(

n−k
2

)

!
=

−k

n
Q0P (n, k, p) .

3.1.2 Past differences

Equation (16) has similarity to a finite difference along k. It represents the
probability difference of the two ways coming from past. Therefore we shall
call the accompanying operator past difference and use the symbol ∆̂ for it.
If ψ is a function of the variables n, k, p, defined at least at (n− 1, k + 1, p)
and (n− 1, k − 1, p), its past difference is

∆̂ψ(n, k, p) = (1 − p) ψ(n− 1, k + 1, p) − p ψ(n− 1, k − 1, p) . (18)

Similarly to usual finite differences we can form higher-order past differences,
for example the second-order past difference

Q2P (n, k, p) := ∆̂2Q0P (n, k, p) = ∆̂∆̂Q0P (n, k, p)

= (1 − p) ∆̂Q0P (n− 1, k + 1, p) − p ∆̂Q0P (n− 1, k − 1, p)

= (1 − p)2 Q0P (n− 2, k + 2, p) + p2 Q0P (n− 2, k − 2, p) (19)

−2p(1 − p) Q0P (n− 2, k, p) .

12
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For n ≥ 2 we obtain

∆̂2Q0P (n, k, p) = ∆̂∆̂Q0P (n, k, p) = ∆̂Q1P (n, k, p)

= ∆̂

(−k

n
Q0P (n, k, p)

)

= (1 − p)

(−k − 1

n − 1

)

Q0P (n− 1, k + 1, p) − p

(

1 − k

n − 1

)

Q0P (n − 1, k − 1, p)

=

(−k − 1

n − 1

)

((1 − p) Q0P (n− 1, k + 1, p) − p Q0P (n− 1, k − 1, p))

−p

(

2

n − 1

)

Q0P (n − 1, k − 1, p)

=

(−k − 1

n − 1

)

Q1P (n, k, p)−
(

2

n − 1

) (

n + k

2n

)

Q0P (n, k, p)

=

(

k(k + 1)

n(n − 1)

)

Q0P (n, k, p) −
(

n + k

n(n − 1)

)

Q0P (n, k, p)

=
k2 − n

n(n − 1)
Q0P (n, k, p) .

The central second-order past differences

Q2P (2n, 0, p) =
−1

2n− 1
Q0P (2n, 0, p) =

−1

2n− 1

(

2n

n

)

(1 − p)n pn (20)

have a special meaning: Because of

|Q2P (2n, 0, p)| = |∆̂Q1P (2n, 0, p)|
= |(1 − p) Q1P (2n− 1, 1, p) − p Q1P (2n− 1,−1, p)|
= (1 − p) |Q1P (2n− 1, 1, p)| + p |Q1P (2n− 1,−1, p)|

for n ≥ 1 the absolute values

|Q2P (2n, 0, p)| = Q0P (2n, 0, p)

2n− 1
(21)

correspond to the probability of absorption after the 2n-th step of the ran-
dom walk specified in chapter 3.1.1.

It is worth13 mentioning that the second order past difference (along k)
is equivalent to a weighted first order difference along n:

Q2P (n, k, p) = Q0P (n, k, p) − 4p(1 − p) Q0P (n− 2, k, p) . (22)

13In important physical equations (e.g. Schrödinger equation) the second derivative
along location is related to the first derivative along time.

13
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This follows from (19) and

Q0P (n, k, p) = (1 − p)2 Q0P (n− 2, k + 2, p) + p2 Q0P (n− 2, k − 2, p)

+2p(1 − p) Q0P (n− 2, k, p) .

3.2 The power series of 1/γ(x) =
√

1 − x2

Just like in chapter 2.2 we now look at the power series of

ζ : [−1, 1] → IR, ζ(x) =
√

1 − x2 ;

ζ(x) = 1
γ(x)

for |x| < 1 and ζ(−1) = ζ(1) = 0 .
√

1 + z = f1/2(z), so

analogously to (4) we get

√
1 + z =

∞
∑

l=0

(

1
2

l

)

zl

= 1 +
1
2

1
z1 +

1
2
· −1

2

1 · 2 z2 +
1
2
· −1

2
· −3

2

1 · 2 · 3 z3 +
1
2
· −1

2
· −3

2
· −5

2

1 · 2 · 3 · 4 z4 + ...

= 1 +
1

21 · 1!
z1 − 1 · 1

22 · 2!
z2 +

1 · 1 · 3
23 · 3!

z3 − 1 · 1 · 3 · 5
24 · 4!

z4 + ...

= 1 −
∞

∑

l=1

1

2l − 1

(

2l

l

) (−z
4

)l

from which follows

ζ(x) =
√

1 − x2 = 1 −
∞

∑

l=1

1

2l − 1

(

2l

l

)

(x

2

)2l

.

So in case of 4p(1 − p) = x2 we obtain with (8), (10) and (20)

ζ(x) =
√

1 − x2 = 1 −
∞

∑

n=1

1

2n− 1
Q0P (2n, 0, p)

= 1 +
∞

∑

n=1

Q2P (2n, 0, p) = 1 −
∞

∑

n=1

|Q2P (2n, 0, p)| .

Because |Q2P (2n, 0, p)| is the probability of absorption after the 2n-th
step,

∑∞
n=1 |Q2P (2n, 0, p)| is the total probability of absorption. Therefore

we conclude:

14
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3.2.1 Theorem:
√

1 − x2 as probability of non-return (of ”escape”)

If a particle makes a Bernoulli random walk, in which each step is directed
from point k to k+1 with probability p, from point k to k−1 with probability
1−p and 4p(1−p) = x2 and the particle is absorbed if it returns to the starting
point, the probability of non-absorption (of ”escape”) is ζ(x) =

√
1 − x2.

Remark. Also more concrete formulations of this theorem are possible.
Due to experimental results we know, that the energy of a photon can be
distributed. If E is the energy of the photon, its frequency ν is given by
ν = E

h
, in which h is Planck’s constant (h ≈ 6.626 · 10−34 Js). At this a

reduction of the photon’s frequency is equivalent to a dilation of its time
period. So we can state:

3.2.2 Theorem: Energy of a received photon as non-returning
(escaping) part of its initial energy

Let γ(x) = 1√
1−x2

represent the (approximative) time dilation factor of refer-
ence system A relative to reference system B as in theorem 2.4. If a photon
is emitted in B with energy Ee = hνe and absorbed in A, the maximal ab-
sorption energy Ea = hνa in system A is given by Ea = Ee

√
1 − x2. So the

quotient14 Ea

Ee
= νa

νe
is (approximatively) equivalent to the probability15, that

there is no return to the starting point during a Bernoulli random walk, in
which each step is directed from point k to k + 1 with probability p, from
point k to k − 1 with probability 1 − p and 4p(1 − p) = x2.

3.3 Case x = 1 resp. v = c with absorbing barrier

3.3.1 Symmetry

In case of x = 1 or v = c also the chapter 3.1.1 described random walk
with absorbing barrier becomes symmetric, because the (after the first step
active) barrier is located in the starting point k = 0 and p = 1 − p = 1

2
with

(10). The probability, that after the n-th step point k is reached and the

14The part of the photon’s energy which can escape and arrive in A in comparison to
initial energy of the photon

15The expectation value of the frequency of non-returning (escaping) walks in compar-
ison to the total frequency or total number of walks
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walk continues, is given by the absolute value of

Q1(n, k) := Q1P

(

n, k,
1

2

)

.

n k → −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
↓
1 1 −1 ·2−1

2 1 0 −1 ·2−2

3 1 1 −1 −1 ·2−3

4 1 2 0 −2 −1 ·2−4

5 1 3 2 −2 −3 −1 ·2−5

6 1 4 5 0 −5 −4 −1 ·2−6

...

Table 2: The first values of Q1(n, k) = Q1(n, k, 1
2
). |Q1(n, k)| is the prob-

ability, that after the n-th step point k is reached and the walk contin-
ues, therefore Q1(2n, 0) = 0 in the absorbing barrier. The underlined val-
ues Q1(2n− 1,−1) = |Q1(2n− 1, 1) −Q1(2n− 1,−1)|/2 = |Q2P (2n, 0, 1

2
)|

are the probabilities of absorption after the 2n-th step. It is visible, that
the numbers result from addition of two symmetric binomial distributions
with opposite sign, one starting at (n, k) = (1,−1), the other starting at
(n, k) = (1, 1), so that at k = 0 annihilation occurs.

3.3.2 Finite random walk

With 3.2.1 in case of x = 1 the probability of absorption (or return to the
starting point) is 1 if the number of steps in the walk has no upper limit.
Because in physical reality within finite time only a finite number of steps
are possible we consider finite partial sums

ζ2n(x) := 1 +
n

∑

m=1

Q2P

(

2m, 0,
1 +

√
1 − x2

2

)

of the power series of ζ(x). Similarly as in chapter 2.5.2 for γ2n(1) we can
find a closed form for ζ2n(1). For n > 0 we get with (22)

Q0P

(

n− 2, 0,
1

2

)

+Q2P

(

n, 0,
1

2

)

= Q0P

(

n, 0,
1

2

)
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so that with Q0P
(

0, 0, 1
2

)

= 1 by induction follows

ζ2n(1) = 1 +

n
∑

m=1

Q2P

(

2m, 0,
1

2

)

= Q0P

(

2n, 0,
1

2

)

=
(2n)!

22n(n!)2
.

In case of large n we can use the Stirling formula and obtain

ζ2n(1) ≈ 1√
πn

. (23)

1 − ζ2n(1) is the probability of absorption in case of x = 1 or p = 1 − p = 1
2

when making at most 2n steps. The probability of absorption (21) after the
2n-th step is given by the negative second-order past difference (along k)

−Q2P

(

2n, 0,
1

2

)

= −∆̂2Q0P

(

2n, 0,
1

2

)

=
1

2n− 1
Q0P

(

2n, 0,
1

2

)

≈ 1√
4πn3

and because of the Schrödinger equation it is remarkable, that with (22) this
is equivalent to the negative (first-order) finite difference along n:

−Q2P

(

2n, 0,
1

2

)

= Q0P

(

2n− 2, 0,
1

2

)

−Q0P

(

2n, 0,
1

2

)

.

We have seen, that the in chapter 3.1.2 defined ”discrete differentiation”
leads to a probability distribution with absorbing barrier. Separation (and
distinction) of the ways on both sides of the barrier is connected with this.
We should recall, that in physical experiments (e.g. double slit experiment)
such separation also is connected with absorption - and emission - of photons
at systems with rest mass.
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