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Worldwide Domain Spaces make quantitative data searchable and 
prepare these for interoperable exchange 

Wolfgang Orthuber, University Medical Center Schleswig-Holstein, Kiel, Germany 

Quantitative (numeric) data are often important and decision relevant. By representation as vectors in 

user defined "Domain Spaces" (DSs) these data become searchable. Every DS represents a nestable metric 

space with unique "Domain Space Identifier" (DSI), which is the HTTP URL of the DS definition. The 

elements of a DS are called "Domain Vectors" (DVs). Every DV contains the DSI and a vector which maps 

or "links" the DV with quantitative data into the DS. This makes the DV accessible to similarity search 

and further evaluation. The approach is demonstrated in an online database with search engine 

(http://NumericSearch.com/). The complete search procedure is called "Numeric Search". It consists of two 

systematic steps: 

1. Selection of the appropriate DS by conventional word based search within the DSIs or other text 

parts of the DS definitions. 

2. Range and/or similarity search of DVs in the selected DS. 

Because DSs can be defined by web users to all their domains of interest, this is a general approach to 

make quantitative data identifiable accessible to range and similarity search. A web standard for 

worldwide valid DS definitions and DVs would allow to place quantitative data as identified open data on 

the web so that they can be searched and exchanged in interoperable way. 

Categories and Subject Descriptors: C.2.6 [Internetworking]: Standards; H.3.3 [Information search 

and retrieval]: Search process – Selection process; E.1 [Data structures]: Distributed data structures; 

I.5.2 [Pattern recognition]: Design Methodology, Feature evaluation and selection  

General Terms: Algorithms, Management, Standardization. 

Additional Key Words and Phrases: Metric Space, Domain Space, DS, Domain Vector, DV, Feature Vector, 

Metric Search, High Resolution Search, Numeric Search, Interoperable quantitative data 

Medical Documentation and Decision Support see 8.10 and 8.11. 

A preprint of this is [Orthuber 2014]. 

1. INTRODUCTION 

A common vocabulary is necessary for conversation. Precondition is that participants 

of conversation quickly know the meaning of all used elements (e.g. words) of the 

vocabulary. It was possible to extend on the web the vocabulary by HTTP URLs, 

because they are viewable - a simple click on such a URL quickly shows its meaning 

(content). We know that the extension by HTTP URLs was successful. This paper 

describes a further extension, which is powerful but not used up to now (2015): 

Elements of metric spaces, defined (with HTTP URL) on the web. Every element 

(vector) of such a space is identified by a HTTP URL plus a sequence of values [8.16] 

and can become searchable and viewable element of the common vocabulary used for 

conversation - a click on it can quickly show its content. With this all well defined 

quantitative data can become searchable and viewable [8.13] elements of the common 

vocabulary - obviously a huge vocabulary. 

 

Generally we can define URLs which locate the definition of something. This is very 

flexible and from programming languages we know how to make definitions in 

machine readable form. Here we focus the situation on the web and use HTTP URLs 

to locate the definition of a following sequence of data resp. values. Main focus are 

numeric values resp. quantitative data. 

 

Results of feature extraction (of complex information, e.g. sounds, pictures, patterns), 

measurements, precise descriptions of products and other things, medical findings, 

technical data, scientific data, economic data, commercial data - all these are 

examples for quantitative (numeric) data. So quantitative data are important. But 

quantitative data are up to now not searchable on the web (which is important also 

http://numericsearch.com/
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for grouping, classification and analysis), and the analysis of huge amounts of data 

[Big Data] is very complicated due to missing identification of data and inconsistent 

data structures. Therefore this paper also aims to provide a systematic approach to 

more structured data on the web. 

 

The potential of quantitative description is large but up to not nearly used, because 

they are not part of the common vocabulary. They are machine-recognizable usually 

only within isolated applications and not generally interoperable. This, however, is 

desirable in many areas, e.g. in medicine. Therefore the approach guides users that 

they can publish own structured machine readable definitions of quantitative data. 

Interoperable reusage and combination of existing definitions within new (complex) 

definitions is part of the concept. Data are provided structured according to existing 

definitions and identified, so they are machine readable and interoperable. The 

search window is automatically structured according to the selected definition of the 

user. 

 

Conventional word based search cannot reach the precision of this, because words 

usually represent a rough categorization of measurable reality [Black et al. 1963], 

[Holsgrove et al. 1998]. A finer description is possible using words in combination 

with numbers (quantitative data) [Nakao et al. 1983]. Example: Compared to the 

word "cupboard" the term "cupboard, price = 250 Euro, width = 100 cm, height = 200 

cm, depth = 50 cm" contains additional information which frequently is decision 

relevant and therefore important. At this every number represents a quantity 

[Wikipedia: Quantity 2014] which is a property that can exist as a magnitude or 

multitude. Quantities can be compared in terms of "more", "less" or "equal", or by 

assigning a numerical value in terms of a unit of measurement. The above string 

"width = 100 cm, height = 200 cm, depth = 50 cm" describes quantitative data (the 

size) of a cupboard. It becomes clear, that searching quantitative data means search 

of well defined numbers. Because human brain is usually adapted to words of 

language within their context numbers are seldom in everyday language and the 

importance of quantitative (numeric) data is usually underestimated. But this is only 

a subjective impression, from the objective point of view quantitative data are very 

important as original information. All results of physical measurements are 

quantitative (numeric) data. These form not only the unbiased basis of our perception, 

also derived information, e.g. technical data, results of feature extraction (most 

relevant information about a certain object) [Wikipedia: Feature extraction 2014] can 

be most efficiently represented in well defined numeric (quantitative) form. Numeric 

(quantitative) data are often important and decision relevant. But up to now these 

data are not searchable. This results from the fact that up to now quantitative data 

(numbers) are on the web usually missing or given in non-uniform way, using 

heterogeneous units and definitions. There are approaches to extract quantitative 

data from existing web content, especially from tables [Sarawagi et al. 2014] 

[Pimplikar et al. 2012] [Limaye et al. 2010]. The results are not error free but they 

can help at conversion of unsharp (without clear rule given) quantitative web data 

into well defined machine readable form. Today for this web data can be stored 

according to the Linked Data approach of the semantic web [Scientific american: The 

semantic web 2001]. OWL [McGuinness 2004] can be used for numeric definitions. In 

RDF [World Wide Web Consortium 2014] these definitions can be addressed using 

HTTP URLs. These approaches are comprehensive and started already before the 

year 2000. Later more slender syntax proposals for structured data have been 
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introduced. An important initiative is the microdata approach [WHATWG 2014] used 

in https://schema.org/ [schema.org 2014]. It allows integrating structured data 

directly into web pages using HTML tags. But all realized approaches together have 

not been sufficient. 

 

Despite enormous activities concerning search and the semantic web up to 

now quantitative data are not searchable on the web. We try to find the 

reasons for this clear shortcoming and list some desirable features of a possible 

solution: An interesting and practicable approach to searchability (and machine 

readability) of quantitative (numeric) data should have the following features: 

 

a) It is general (globally usable for all quantitative data). 

b) It is slender (avoid unnecessary overhead at the basis). 

c) It is hierarchic (to allow high complexity by nesting). 

d) Quantitative data are searchable by similarity (user can determine the order 

of the search result by providing "wished" numbers). 

e) Quantitative data are searchable without special knowledge (after providing 

a keyword or topic search of quantitative data should be possible by filling in 

a form). 

f) Data providers get clear rules, e.g. authors of websites can provide 

quantitative data with the aid of adapted software by filling a form, which is 

e.g. determined by an online definition (of the used DS as described below). 

g) Quantitative data of a web resource are visible after click on it (e.g. in tabular 

form, using adapted web browsers). 

 

[schema.org 2014] contains a vocabulary for a lot of items and its hierarchic structure 

implies clearness. But up to now it is no general approach a). For this it is necessary 

that the users of the search engine can globally define the searchable numeric data. 

Among the above features up to now a) d) e) f) g) are not realized. Condition e) is 

important for practicability, we cannot expect that users know a priori a large 

vocabulary or names of searchable variables (e.g. to use these in SPARQL queries). 

Here an approach is shown which makes quantitative data searchable and which is 

designed to fulfill above conditions a) b) c) d) e) f) g). This can be already 

demonstrated using the online implementation http://NumericSearch.com/ [Orthuber 

2012].  

 

An abbreviated description: Quantitative data are represented as "Domain Vectors" 

(DVs) (identified number sequences) which are elements of "Domain Spaces" (DSs). 

Every DS represents a worldwide defined metric space [Zezula et al. 2005] with 

unique "Domain Space Identifier" (DSI), which is the URL of the DS definition. The 

DS has a finite count of dimensions (Fig. 1) and it is nestable, i.e. every dimension 

can represent a (unbranched) value (usually a number, or text if explicitly specified) 

or again a DS (Fig. 2). The DS can be defined by any domain name owner according 

to a certain domain [Haas 2005] of interest. The DVs are the elements of a DS. Every 

DV provides identified quantitative data and so well defined similarity relations to 

other DVs of a DS. For this we assume that an unbranched dimension of a DS (a 

value, see Fig. 2) is numeric. An unbranched value can be also a text, but this case is 

here not used for similarity comparison but for additional textual conditions in 

search, see 6.8. 

https://schema.org/
http://numericsearch.com/
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Domain Space (DS): 
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Fig. 1. A multidimensional DS. The DS and every of its dimensions have a unique name (HTTP URL).  

 

Dimension of a DS: 

 

 

 

 
Fig. 2. A dimension of a DS can represent an unbranched value or a DS. A unbranched value is usually a 

number, but if explicitly specified, it can be also text (e.g. a hyperlink) or binary data. If a dimension 

represents a value, it is called unbranched, else (if the dimension represents a DS) it is called branched. 

Because a dimension (of a DS) again can represent a DS, DS definitions can be nested and reused within 

new DS definitions. 

 

The structure of DSs definitions (Fig. 1 and Fig. 2) is comparable to that of an 

ordered directory tree: A DS combines dimensions which represent values or again 

DSs, like a directory contains files or again directories. At this in a DS definition the 

order of dimensions is relevant because it determines the order in which values can 

be given in a DV without necessary dimension identifier. Additionally in a DS 

circular definitions (8.7.1) are possible. 

 

Representation of objects and data by such online (world wide) defined vectors (DVs) 

can become a fundamental concept of informatics due to its basal features. It is a 

precise, internationally interoperable, comparable and searchable representation of 

information. The paper explains details of the approach. It is organized as follows: 

Section 2 recounts the metric space concept and its application, especially in case of 

partially defined vectors. Section 3 describes the Minkowski distance function and its 

adaptability. Based on this nesting of distance functions is derived which allows 

integration and combination of metric space definitions. Section 4 expands on the DS 

concept and its potential for connection of information. Section 5 addresses reusage of 

DS definitions within new definitions. Section 6 demonstrates the concept by 

examples using the online implementation. Section 6.7 provides details about the 

necessary content of DS definitions and DVs for development of a web standard. 

Section 8 discusses several important aspects. The conclusion follows in section 9. 

2. METRIC SPACES 

Metric spaces are a natural container for searchable quantitative data, because all 

elements (vectors) of a metric space have a well defined distance which can be used 

for similarity calculation. There is a huge literature on search in metric spaces, also 

Dimension 1 

Dimension 2 

Dimension n 

Dimension 3 

Dimension 

Value (unbranched) 

Domain Space (DS) 
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the high dimensional case is well investigated. Approximate nearest neighbor search 

is possible in sub linear time also in high dimensional spaces [Indyk et al. 1998]. Here 

we also use the metric space concept. On the web, however, we usually cannot 

assume a fixed set of dimensions for search (4.4), therefore we introduced the 

dimension-wise synchronized index (6.5) which are suitable for all combinations of 

dimensions.  

HTTP-URLs are the basis for direct connections on the web via hyperlinks, and they 

can be also used for identification of (online definitions of) metric spaces which define 

connections (similarity relations) between all their elements. At this the term 

"similarity" is represented in well defined way by a nonnegative real number called 

"distance": The smaller the distance between two elements, the greater is their 

similarity. If the distance between two elements is zero, the compared quantitative 

data are identical. 

Because metric spaces play a central role in this paper, their definition is repeated 

here: A metric space [Wikipedia: Metric space 2014] is a set S with a distance 

function D which represents for every two elements (vectors) X,Y in S the distance 

between X and Y as a nonnegative real number d(X,Y) with 

D(X,Y)=0 if and only if X=Y and      (1) 

D(X,Y)+D(Y,Z) ≥ D(X,Z) (triangle inequality) and    (2) 

D(X,Y)=D(Y,X)         (3) 

A distance function which fulfils (1)(2)(3) is called a metric. The distance D quantifies 

the similarity in S. Two elements X,Y of S are the more similar, the smaller the 

distance D(X,Y) is. Note that D(X,Y) is a real number and therefore one-dimensional. 

But the set S can be a multidimensional space. In this paper (as content of a DS) it is 

a m-dimensional feature space which is subset of Rm, and the elements (X,Y,Z in the 

above formulas) are m-dimensional feature vectors which are represented by 

sequences of real numbers (x1 ... xm, y1 ... ym, z1 ... zm). The definition of S does not 

contain a limitation regarding cardinality, so metric spaces can be very large. 

 
2.1 Induced Metric 

If D(X,Y) fulfils (1)(2)(3) for all X,Y   Sm   Rm, then it is possible to compare a 

subset of all dimensions of Rm using an induced metric: 

Let J={xj1, xj2,…, xjn} {x1,x2,...,xm} denote a selected subset of dimensions. We define 

the set  

RJm = {(x1, x2,…, xm) where (xjR) for xjJ and ((xjR or xj is undefined ) for xjJ } 

So in contrast to Rm in RJm values at dimensions outside J can be undefined.  

Let Xm, Ym   Rm with Xm = (x1, x2,…, xm) and Ym = (y1, y2,…, ym). 

We define the mapping 

BJ: RJm   SJ   Rm with BJ(Xm)=(b1, b2,..., bm)  

 where bj=xj for xjJ and bj=0 for xjJ     (4) 

So BJ simply replaces possibly undefined values by 0, therefore BJ(Xm) is well defined. 

Its value set SJ is a subspace of Rm [Wikipedia: Linear subspace 2014]. So if Dm: Rm x 

Rm   R is a metric on Rm , then the restriction DJ: SJ x SJ   R with 

DJ(Xm,Ym)=Dm(Xm,Ym)        (5) 

is a metric on SJ . It is called induced metric. The subspace SJ forms together with DJ 
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a metric space. 

2.2 Comparable vectors 

In applications we cannot expect that Xm contains values at all dimensions x1, x2,…, 

xm of Rm . But we can expect, that Xm contains values at an adaptable subset J of 

dimensions, i.e. we can assume XmRJm and BJ(Xm)SJ according to (4). In this case 

Xm is called comparable in SJ. 

Two vectors are called comparable, if they have values at an overlapping set of 

dimensions. The distance between comparable vectors depends on the selected subset 

J of compared dimensions. These determine the space SJ in which the distance DJ (5) 

is calculated.  

3. SIMILARITY COMPARISON OF QUANTITATIVE DATA 

Similarity comparison is done by calculation of the distance between the vectors 

(Domain Vectors) which represent the compared data in their space (Domain Space). 

3.1 The Distance Function 

Generally for similarity comparison every metric (see 2) can be used as distance 

function. If the triangle inequality (2) is not needed, it is even not necessary that the 

distance function is a metric [Aggarwal et al. 2001]. The optimal distance function 

depends on the application, and on the definition of "optimal". 

 
3.2 The Minkowski distance 

Because it is not possible to discuss every distance function, we need to make a first 

preselection (which can be expanded later). Because the dimensionality of Domain 

Spaces can vary, we need a distance function with adaptable dimensionality. Nesting 

should be possible (see 3.5). Frequently used distance functions like Euclidean and 

Manhattan distance should be included as special cases. The Minkowski distance 

[Wikipedia: Minkowski distance 2014] covers these requirements and is established.  

The Minkowski distance D(X,Y) of order k ≥ 1 between two vectors X = (x1, x2,…, xn) 

and Y = (y1, y2,…, yn)  Rn is 

D(X,Y) = 
kn

j

k

jj yx

1

1

















 ; (k ≥ 1)      (6) 

Here we presuppose k ≥ 1, because in this case the Minkowski distance D fulfills 

besides (1)(3) also (2) and is a metric. In (6) there is freedom regarding the unit or 

scale of xj, yj, therefore we can multiply every dimension with a constant rj>0 and get 

the weighted Minkowski distance. 

 
3.3 The weighted Minkowski distance 

The (with constants rj>0) weighted Minkowski distance D(X,Y) of order k ≥ 1 between 

two vectors  

X = (x1, x2,…, xn ) and Y = (y1, y2,…, yn )  Rn is 

D(X,Y) = 
kn

j

k

jjj yxr

1

1

)( 
















        (7) 

D is a metric for k ≥ 1 and we can search given quantitative data x1, x2,…, xn by 

inserting the xj with rj > 0 as coordinates of a searched feature vector X0 as described 

in 2.2 and calculating and sorting the distances to X0. At this the factor rj determines 
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the relative weight of dimension j. The larger rj, the more dimension j influences the 

distance and derived search results. In case of rj=0 the dimension xj is ignored. If we 

calculate (7) within a subspace SJ (4), it is sufficient to sum up only over dimensions 

in J (therefore an index should require disk access only for the searched dimensions, 

see 6.5.). 

 
3.4 Selection of the exponent k 

Due to their importance we explicitly write weighted Minkowski distances with 

certain k. Special cases are the weighted Manhattan distance with k=1, the weighted 

Euclidean distance with k=2 and the weighted Maximum distance with k→∞: 

D1(X,Y) = 



n

j

jjj yxr
1

)(  Manhattan dist.    (8) 

D2(X,Y) = 



n

j

jjj yxr
1

2

)(  Euclidean dist.    (9) 

D∞(X,Y) = )(max 1 jjj

n

j yxr   Maximum dist.    (10) 

Among these D1 provides the best contrast between different vectors [Aggarwal et al. 

2001]. D2 can be used e.g. for calculating distances with direct geometrical meaning. 

D∞ can be e.g. used for limiting the range of dimensions. 

 
3.5 Nested distance functions 

It is efficient to use definitions of established metric spaces within other new 

definitions. For this combination of distance functions to one nested distance function 

is required. We now show, that analogously to (7) instead of differences |xj-yj| also 

metrics can be nested to a superordinated metric: 

 

PROPOSITION.  Let V denote a vector space whose dimensions are a concatenation of the 

dimensions of vector spaces V1, V2,..., Vn and X,Y,Z   V. We presuppose wj > 0, k ≥ 1 

and that for j   {1,2,...,n} Dj is a metric on Vj and Xj,Yj,Zj   Vj . Then the following 

nested distance function is a metric: 

DC(X,Y) =  
kn

j

k

jjjj YXDw

1

1

),(
















       (11) 

PROOF.  We have to show (1)(2)(3) of section 2. Due to nonnegativity of Dj(Xj,Yj) from 

DC(X,Y)=0 follows Dj(Xj,Yj)=0 and therefore Xj=Yj for j{1,2,...,n} and X=Y. Reversely 

from X=Y follows Xj=Yj and Dj(Xj,Yj)=0 for j  {1,2,...,n} and so DC(X,Y)=0, therefore 

(1) is true. Symmetry (3) of DC(X,Y) follows from symmetry of Dj(Xj,Yj). We now prove 

(2). For k≥1 and uj, vj  R we have due to the Minkowski inequality [MATH41002 

2014] : 

kn

j

k

j

kn

j
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we set uj=wjDj(Xj,Yj)≥0 and vj=wjDj(Yj,Zj) ≥0 and get 
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Due to Dj(Xj,Zj) ≤ Dj(Xj,Yj)+Dj(Yj,Zj) (triangle inequality) 
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this is just the triangle inequality for DC in (11):  

DC(X,Z) ≤ DC(X,Y) + DC(Y,Z) 

So we have shown also (2) and so proven that (11) is a metric. (11) has a similar 

structure like the Minkowski metric (7), only the |xj-yj| are replaced by Dj(Xj,Yj). 

Because the |xj-yj| are special cases of a metric, (11) is a generalization of (7). So in a 

(weighted) Minkowski distance function (7) for every j the absolute difference |xj-yj| 

can be replaced by a metric Dj(Xj,Yj). The result (11) remains a metric.  

 

Important special cases of (11) are the following nested distance functions 

DC1(X,Y) =  


n

j

jjjj YXDw
1

),(   nested Manh. dist.   (12) 

DC2(X,Y) =  


n

j

jjjj YXDw
1

2
),(   nested Eucl. dist.   (13) 

DC∞(X,Y) =  ),(max 1 jjjj

n

j YXDw  nested Max. dist.   (14) 

 
3.6 Estimation of the weights 

We assume that the functions Dj(Xj,Yj) in (11) are Minkowski distances of the form 

(7). The weights rj and wj are free parameters and we need an estimation. If there is 

no further information available, the initial values are rj=1 in (7) and wj=1 in (11). 

The wj can be left unchanged, because all necessary modifications can be done by 

adjusting the rj in (7). They are important for multidimensional similarity search, 

because they determine the relative weight of dimensions for calculation of the 

overall distance. 

 

If there are no individual preferences, at least the influence of a dimension's unit 

should be eliminated. The smaller the unit of a dimension, the larger is its numerical 

variation. It is possible to take into consideration the numerical variation of a 

dimension j by setting rj = 1/sj , where sj can be e.g. the standard deviation (or a 

difference between two given percentiles) of dimension j. Calculation of the r j can be 

done also retroactively. 
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We now come to the application of the above theoretical background. 

4. DOMAIN SPACES 

The metric space concept can be used systematically on the web to make 

multidimensional quantitative data searchable. When defining a metric space about 

a certain domain of interest, regularly it is desirable to include all possibly 

interesting dimensions. This leads to a domain specific metric space DSm with 

maximal dimensionality m. Because we cannot expect that users always provide 

values for all m dimensions we introduce the following convention: 

A Domain Space (short "DS") is defined by the domain specific metric space DSm with 

maximal dimensionality m. The elements of a DS are called Domain Vectors . Every 

Domain Vector (short "DV") has a feature vector which has values at all or a subset of 

all m dimensions. Partially defined feature vectors can be mapped by (4) into 

subspaces of DSm.  

 

Subsequently we abbreviate, where clear, the term "DSm of DS" by "DS". For example 

we call "subspaces of DSm of the DS" simply "subspaces of the DS". Analogously we 

abbreviate, where clear, "feature vector of the DV" simply by "DV".  

 

DVs are called "comparable" if their feature vectors are comparable (see 2.2), i.e. if 

they have values at an overlapping set of dimensions. It is possible to select a subset 

J of these dimensions for similarity comparison and to calculate distances DJ (5) 

between all DVs which are comparable in SJ (4). The smaller the distance is, the 

greater is the similarity in SJ.  

The subspaces SJ of a DS form a set of domain specific metric spaces [Kriegel et al. 

2010], [Wikipedia: Vector space model 2014] or conceptual spaces [Gaerdenfors 2000; 

2004].  

 

The structure of a DS is shown in (Fig. 1) and (Fig. 2). To ensure that also DSs with 

non numeric dimensions are metric spaces we can define for every non-numeric 

dimension j  : 0 jj yx  for jj yx   and 1 jj yx  for jj yx   (discrete metric) and 

we see that (6) and (7) fulfil the conditions (1)(2)(3) for a metric. 

 
4.1 The addressable web extended by Domain Spaces 

Every DS has a HTTP URL [Berners-Lee et al. 1998]. It is the HTTP URL of its 

definition on the web and it is the worldwide unique Domain Space Identifier (DSI). 

The DS consists of its definition and of its elements which are the DVs. Every DV 

contains at least the following information:  
 

 Its "Vector Location" (short "VL"). This is the HTTP URL of the DV on the 

web. 

 The DSI (HTTP URL of the DS definition) 

 The numeric representation of its feature vector, given by (hyperlinks to) 

identified numeric values for all or a part xj1, xj2,… , xjn of all dimensions x1 ... 

xm of the DS (see 2.1). 
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Domain Vectors (DVs) can be regarded as links (or mappings) into Domain Spaces. 

Fig. 3 compares the most important characteristics of Hyperlinks and Domain 

Vectors. It shows that the destination of a hyperlink can be every HTTP URL of the 

web, while the destination of a DV can be only the HTTP URL of a DS (which 

represents all contained DVs). The DS definition is an intermediate station of 

bidirectional links (Fig. 4). DVs are especially useful when multiple resources with 

quantitative features of the same domain of interest should be connected by 

"similarity". The similarity depends on the (by the user) selected subset J of 

compared dimensions. These determine the subspace SJ in which comparison is done, 

and these determine the distance function DJ in (5). The distance is defined to all 

DVs which have values at least at the selected dimensions. The similarity (of the 

compared dimensions) is the greater, the smaller the distance is. 

 

 Hyperlink Domain Vector (DV) 

Usual 

location  

resource with 

HTTP URL 

resource with HTTP URL 

Connections 

from 

location 

unidirectional to a 

HTTP URL on the 

web 

via HTTP URL of the DS 

bidirectional similarity 

relations to all (locations of) 

comparable DVs 

Connections 

back to 

location 

 given from (the locations of) 

all comparable DVs of the 

same DS 

Essential 

information  

(besides 

location) 

HTTP URL of 

destination 

HTTP URL of DS and 

values xi of a subset of 

dimensions of the vector 

Optional  HTTP URL of described 

resource 

Distances  available to all (locations of) 

comparable DVs of this DS 

and included DSs, see 

section 5 

Additional 

purpose 

 searchable quantitative 

description  

Fig. 3. Comparison Hyperlink / Domain Vector. A Domain Vector can be regarded as a link into a Domain 

Space. 
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Fig. 4. Bidirectional weighted connections (similarity relations) defined by a group of DVs to a (HTTP URL 

of a) DS. Shown are connections within a two-dimensional subspace. They connect the (locations of the) 

DVs. The length of the blue lines illustrates the distance. The smaller the distance, the greater is the 

similarity. 

As example we assume that the user has selected 2 dimensions for comparison in a 

DS. We can use their values as coordinates and represent every DV as point in the 

2D plain. Fig. 4 shows an example with 7 comparable DVs in the subspace 

determined by the selected dimensions. If we assume Euclidean distance (9), the 

lengths of the blue lines can be used to represent the distances between the DVs .  

Fig. 5 shows the connections defined by a group of hyperlinks to a HTTP URL. 

Hyperlinks generate no implicit connections, so k hyperlinks generate also k 

(unidirectional) connections. When this is wished, the hyperlink is appropriate. But if 

a group of resources (with interesting quantitative descriptions) of the same domain 

should be (described and) connected, DVs are efficient. If we assume that there are k 

DVs in a m-dimensional DS, each with values at all m dimensions, then there are 2m 

different subsets of dimensions which each define k(k-1)/2 distances (weighted 

connections). These can be evaluated, e.g. for similarity search. The quantitative data 

are also available for further calculations, e.g. statistics.  

 

 

 

 

 

 

 

 

Fig. 5. Unidirectional connections defined by group of hyperlinks to the same HTTP URL. There is no 

bidirectional connection or similarity relation, but the destination of the hyperlinks can be every HTTP 

URL on the web. 

 
4.2 Similarity search in a DS 

In 2.2 is described how to calculate distances between DVs after selection of the 

dimensions for comparison. Analogously it is possible to select a set J of dimensions 

for similarity search. If SJ is the subspace (4) which is determined by these 

dimensions, distances DJ (5) can be calculated to all DVs which are comparable in SJ. 
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If there are no further restrictions, these DVs form the search result. The smaller the 

distance of a DV, the higher is its rank in the search result. Further restrictions of 

the search result are possible, e.g. ranges (minima and maxima) of independently 

selected dimensions. 

 
4.3 Storing relevant dimensions 

When storing information about the world on the web, usually most measurable 

quantitative features are omitted. Macroscopic world has so many quantitative 

features, that it is necessary to select in dependence of the domain few most 

interesting (decision relevant) features for further information processing. These 

need not be "direct" physical measurement results, they can be completely derived, 

e.g. a result after feature extraction and/or prepared for usage with special software. 

For example dimensions could represent instead of or additionally to (large amounts 

of) original data results of specific hashing functions [Andoni et al. 2008] [Indyk P. 

1999] [Gionis et al. 1999] or other effective dimension reduction techniques [Grant et 

al. 2013] on the original data, to increase efficiency of search. The main issue is that 

they are interesting (e.g. for search, or directly decision relevant) for future readers 

or users. So DSs typically contain those dimensions which describe the part of the 

world, which is interesting in the chosen domain. In the course of time new features 

can become interesting, other features can become deprecated. The distance function 

is alterable, dimensions can become unused, new dimensions can be added. This can 

lead to high dimensional DSs. But this does not mean that search becomes high 

dimensional. 

 
4.4 Searching in a subset of dimensions 

Due to the curse of dimensionality [Aggarwal et al. 2001] high dimensional similarity 

search tends to become inefficient in case of independent dimensions, else (in case of 

dependent dimensions) dimension reduction techniques are recommendable, see 4.3. 

Moreover DSs often have dimensions which describe incommensurable data, e.g. data 

with incommensurable units. In this case the relative weight of a dimension depends 

on the intention of the user at search time and it is not possible to anticipate it as 

described in 3.6. Therefore it is recommendable to select only a small subset J of 

dimensions with meaningful common distance function for similarity search (2.2) to 

get a well interpretable ranking of the search result. If only one dimension is 

included into similarity search, the search result is simply ordered by the absolute 

difference of the searched dimension. The smaller it is, the higher is the ranking of a 

DV in the search result. 

 

Additionally the search result can be restricted by determining minima and maxima 

of dimensions. These dimensions are also called "searched", together with the 

dimensions in J. 

Search is done over DVs which contain values at all searched dimensions. This 

implies, that the probability to be found is the greater, the more numerical values 

(dimensions) are given in a DV. 

5. COMBINING DSS 
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5.1 Grouping DSs 

A DS group is a set which contains as elements DSs and/or DS groups. Grouping of 

DSs or DS groups can be for example useful if they have a common topic. So a DS 

group with topic "clothes" may contain the DSs or DS groups "trousers", "shirts", 

"coats" etc. 

Grouping of definitions can be appropriate to (simply) build a thematic structure of 

DSs and/or DS groups without involvement of dimension definitions. 

 
5.2 Nesting DS definitions 

Every DS combines an expandable set of named dimensions, and every dimension 

can represent: 

 an unbranched value, usually a number (with selectable precision, date 

included, accessible to similarity search and min max conditions) or a text, if 

explicitly specified. Short text (tux) can be handled as efficiently as a number.  

 a DS (DVs are also accessible to similarity search and min max conditions, an 

additional condition can be a maximal distance of its DVs.) 

So a dimension can also represent another DS. It can be efficient to use DS 

definitions within other new definitions. For example a DS with the DSI 

"http://example.org/hemogram-1.htm" can be used within many DSs which describe 

medical findings. It is not necessary to reinvent it. We can use its metric in a nested 

distance function (11). This is important due to the following reasons:  
 

 Established DS-definitions can be reused and included as "Sub-DS 

definitions" into new (higher dimensional) DS-definitions with weighted 

Minkowski metric (7), in which coordinate differences |xj-yj| are replaced by 

the distances Dj(Xj,Yj) of the Sub-DSs. It is sufficient to use their HTTP URLs 

as reference. So also updates are automatically forwarded.  

 The included DS can have any metric, also a non-Minkowski metric, or again 

a nested metric (11). 
 

There are well defined similarity relations (Fig. 4) between all DVs which have a 

common HTTP URL of (their DS or) an included DS. One application of nested DS 

definitions is realization of ontology based structures [Wikipedia: Domain Ontologies 

2014] in quantitative data. The nesting level of a DS is the maximal count of nested 

layers. Fig. 6 shows an example of a nested DS definition with 2 layers (nesting level 

2). 

Nesting of DS definitions can quickly lead to high dimensional DSs. But according to 

4.4 it is recommendable to select only a small subset of dimensions for search. 

 

 

 

 

 

 

 

Fig. 6. Exemplary nested DS definition in the structure of Fig. 8 (nesting level is 2). 
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6. LOCAL IMPLEMENTATION 

Up to now there is no web standard for worldwide valid DSs on the web. 

Nevertheless it is possible to implement the search principle locally. We have done 

this in the online implementation http://NumericSearch.com/ . It contains a local 

database with DSs definitions and to every DS definition a local database with the 

DVs of this DS. 

 
6.1 Keycomments 

For description of DSs, DS dimensions and DVs we used "keycomments" which are 

structured comments: Every keycomment starts with an ordered list of one or more 

(optionally linked) keywords, followed by a comment which is a string. 

 

Fig. 7. Input mask of a keycomment with 3 keywords, in which the second is also a hyperlink 

 

The advantage of the structured keycomment is that the meaning of the ordered 

keywords or hyperlinks can be defined a posteriori, depending on application. So for 

example the first keyword "kw0" can be a unique identifier, the second keyword can 

be a unit etc.. 

 
6.2 Implemented DS and DV structure 

Every DS has a distance function of the form (12) or (13) or (14) where every Dj has 

the form (8) or (9) or (10) or GPS distance (see e.g. [Movable Type Scripts 2014]). So 

there are exactly 2 nested layers (nesting level 2): Every DV has a vector which 

contains one or several "subvectors" (DVs of "Sub-DSs") with numeric dimensions. 

Fig. 8 shows an example of a DS with 2 subvectors. Fig. 9 shows the definition of a 

subvector, Fig. 10 the definition of a dimension.  

 

http://numericsearch.com/
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Fig. 8. Exemplary definition of a DS. The local DSI (in the local database) is "Cupboard" (in a web 

standard it would be a HTTP URL). The first column shows the internal index of the subvectors and the 

second column the internal index of the numeric dimensions (2 layers, see Fig. 6). 
 

 
Fig. 9. Definition of a subvector shown after clicking on "1" in the first column of Fig. 8. 
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Fig. 10. Definition of a dimension shown after clicking on "0" in the second column of Fig. 9. 

 
It is possible to define minimum, maximum and weight (rj default in (7)) of every dimension. 

Also the representation can be adapted to the user's needs. The internal representation is a 64 

bit double, the external representation can be: 

 

list: Appropriate if the dimension represents the position in a list of items, e.g. a selection 

between two possibilities like "yes" and "no". By default the items are internally represented 

by integers (0,1,2...) in this implementation. 

For a later implementation the following option is possible: Every item can be considered as 

interval, so that all items represent an ordered list of labeled intervals (a partition) of the set 

of real numbers R. The first interval may have no lower border, else by default the lower 

border of an interval is the upper border of the previous interval, the last interval may have no 

upper border. If these intervals are defined for a dimension and the user selects the input 

option "intervals", the ordered list of interval names is opened and the user can select a name. 

If the name is given as sort criterion, the mean of the interval (or the border, if only one border 

exists) is internally inserted into the similarity field. If the name is given as condition, the 

lower bound of the interval is (if existing) internally inserted into the min field and the upper 

bound (if existing) into the max field. 

 

tux: Appropriate if the dimension represents a short alphanumeric text which can contain up 

to 8 lowercase letters a..z or digits 0..9. It is introduced because it can be easily remembered. 

Search is defined so that all DVs are found whose initial letters are at this dimension identical 

to the searched tux. So the initial letters should be most significant. 

Compared to tux a list of intervals or the following ordered representations have the 

advantage that they allow similarity comparisons and further algebraic evaluation: 

 

date: for representation dates in variable accuracy (highest significant numbers first, e.g. 

yyyy-mm-dd hh:mm:ss) 

 

floating point: floating point number in variable accuracy, e.g. for measurement results 

 

integer: integer number, e.g. for counts 

 

An interesting but in the current version not implemented possibility is the definition of 

dimensions as computational results of other dimensions. 
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Fig. 8 shows that Manhattan metric is chosen to connect the distances of 2 

subvectors according to (12). In every subvector (e.g. Fig. 9) again Manhattan metric 

is chosen (to connect dimensions) according to (8) with all weights rj=1, wj=1 (1 is 

default value for weights). Therefore the distance function of DSm (with maximal 

dimensionality) is 

D(X,Y)= |xPrice - yPrice| + 

  |xWidth - yWidth| + |xDepth - yDepth| + |xHeight - yHeight| (15) 

According to 4.4 a subset J of these dimensions can be searched and so used for 

sorting the search result. Then the sum includes only the searched dimensions. If for 

example only a value of dimension "Price" is given for similarity search, then the 

distance function reduces to 

D(X,Y)= |xPrice - yPrice|       (16) 

This distance function is used in the search example (Fig. 13) of section 6.3. 

 
6.3 Search 

The complete search procedure will be called Numeric Search subsequently. It 

consists of 2 systematic steps:  

1 of 2: In the first step the appropriate DS is selected. This can be done by clicking on 

its index number directly in the list of all DSs (Fig. 11) or after word based search 

within the DSIs (Fig. 12) which are here (in the local database) the first keywords 

(kw0) of the space definitions. After selection of the appropriate DS its specific search 

mask appears (Fig. 13).  

2 of 2: The second step is metric similarity search in the selected DS or a part of it. 

All data for this are provided in the search mask of the DS. 

 

Fig. 13 shows an example of a search mask with exemplary input. It shows the 

search of the cheapest cupboards (those nearest to price=0). Two checkboxes in 

column "g" are checked to signal the wish for graphical and statistical output of Price 

and Width. Fig. 14 shows the resulting graph over the checked dimensions together 

with the search result. 



18 

 

 

 

 

Fig. 11: Excerpt of the start screen. The first column "i7" shows index numbers of the DSs. Clicking e.g. on 

"1006" opens the search mask (Fig. 13) of the DS with local DSI "Cupboard". The second column "s" shows 

the search count, the third column "r" the count of resources in a DS. Clicking on "o" in the next column 

shows the owner of a DS. Then follows the first obligatory keyword kw0 which here is the DSI (blue if 

HTTP-link), after "|" further optional keywords, after "||" a comment. After clicking on "kw0" text search 

is done over the DSIs of the DSs, the result is shown in Fig. 12. 

 

 
Fig. 12: Text search result after entering the first letters of the DSI in Fig. 11 and clicking on "kw0" 

(Keyword 0).  

 

 
Fig. 13: Similarity search mask. It appears after selection of the DS (click on 1006 in Fig. 11 or Fig. 9). 

Similarity search of Price "0" is selected with graphic output of price in dependence of width. 
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Fig. 14. Search result with preceding graphic output. Click on the index in the 1. (left) 

column opens the DV (resource). The 2. column "d" shows the distance, here 

d=|price-0|, the 3. column "a" shows the access count, click on "o" in the 4. column 

shows data of the owner. Then follows the first keyword with optional link for 

description of the resource, after "||" an optional comment, after "|" the quantitative 

data in order of Fig. 13 (Price, Width, Depth, Height). 
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Together with the graph in Fig. 14 statistical data of the checked dimensions are 

shown (average, standard deviation, minimum, maximum of price and width). This 

allows to check dependencies.  

 

The min and max fields (Fig. 13) can be used to restrict the range of certain 

dimensions in the search result. (The checkboxes "o" and "w" can be used to restrict 

the search result to offered or wanted resources, the "pcnt" field allows to enter the 

maximal count of shown resources in the search result, pcnt=1000 is default and 

maximum.) So the search result can be restricted to a certain part of all DVs. Using 

the checkboxes of column g allows to get statistical data of selected dimensions in the 

search result. 

 

According to Fig. 13 the searched value of dimension "Price" is 0. This is inserted into 

(16) and leads to the distance d = D(X,Y) = |Price-0| = |Price|. Therefore in Fig. 14 

the distances in the second column "d" are equivalent to the Price of the resources 

which is the first number after "|". Fig. 14 shows most important data of the search 

result in compressed form. Clicking on the index of a DV (left column) shows its data 

in more detailed form in a new window (Fig. 15).  

 

 

Fig. 15. Data of a resource shown after clicking on "6" in the left column of the table in Fig. 14 

 

 
6.4 Search results in case of equally distributed pseudo random numbers 

To illustrate the effect of the distance function (7) we generated a high dimensional 

Domain Space with 1500001 DVs whose dimensions have been filled with equally 

distributed pseudo random numbers between 0 and 10.  

 

Fig. 16 shows the search result of (7) with default rj=1 in case of k=2 (Euclidean 

distance (9)), Fig. 17 shows it in case of k=1 (Manhattan distance (8)).  
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Fig. 16. Elliptic shape of output after searching within 1500001 DVs the 1000 nearest around point 

(x,y)=(7,2) in case of Euclidean distance (9). 

 

 

Fig. 17: Shape of output after searching within 1500001 DVs the 1000 nearest around point (x,y)=(7,2) in 

case of Manhattan distance (8). 

 

While both graphs are identical near the center, in case of large deviation of one 

dimension (near to the border of the graph) Manhattan distance restricts the other 

dimension sharper than Euclidean distance. Also research [Aggarwal et al. 2001] 

shows that Manhattan distance provides more contrast. Therefore we selected 

Manhattan distance (8) as default metric. Independently of this Euclidean metric can 

be recommendable e.g. if the dimensions represent Cartesian coordinates and the 

distance should have a geometric meaning.  

 



22 

 

 

 

6.5 Synchronized index 

In the implementation we used for every DS a synchronized index. Subsequently we 

give a short description of it in a version which can be used also for DV-groups (see 

7.3) on the web.  

 

The dimensionality of a DS (or even all DSs on the web) can become large, 

nevertheless similarity search usually includes only a subset of all dimensions. There 

are 2n possibilities to select a subset of dimensions within a n-dimensional space. 

This selection is done before search, not before index calculation. So the synchronized 

index does not anticipate a certain combination of dimensions, i.e. every dimension 

has an own dimension database (three in Fig. 18) in the index which is optimized for 

quick access. During index creation the original DVs are scanned on the web and the 

count of scanned DVs (resp. DV-groups, if DVs are grouped, see 7.3) is increasing. We 

will call this increasing count "c". As long as dimensions belong to the same DV, the 

count c is constant. After a DV is fully scanned, c is stored in a separate database (A) 

together with the HTTP-URL of the DV and all further information which should be 

available in the search result. All (short) data records of the dimension databases get 

c as identifier (c in Fig. 18) of the DV and the numerical value (x4, x8, x15 in Fig. 18) 

of the dimension. Data records with the same c belong to the same (multidimensional) 

vector of a DV. After all data of a DV are stored in the index, c is incremented by 1. 

We can say that the increasing c "synchronizes" the dimension databases (B). 

Therefore we call this ((A) and (B)) a synchronized index.  

 

So in case of multidimensional similarity search only the (few) dimension databases 

of the searched dimensions are serially scanned along increasing identifier c (linear 

performance, or better if c makes large jumps). As soon as an identifier c is found for 

which all searched dimension databases contain values (in Fig. 18 for c   {9, 21, 29, 

42}), it is checked whether the values fulfill the requirements (especially the min-max 

conditions). If yes, the distance is calculated ((12) can be used for combining multiple 

DSs). It is appended to the preliminary search result together with the dimension 

values and the most important information (A) about the DV.  

 

This can be used for scanning all combinations of synchronized dimensions in linear 

performance or better. As soon as the searched dimensions are fully scanned, the 

preliminary search result is complete. After sorting it according to distance (the 

smallest distance first) we get the final search result. 

Additionally special indices can be calculated, e.g. for every dimension (e.g. along x4, 

x8, x15 of Fig. 18) an in ascending order sorted dimension database. Such databases 

can be used to get quickly a maximal set which fulfils all min-max conditions. This 

set can be (after sort along c) used to define great jumps along c in Fig. 18 to increase 

scanning velocity. 

If frequently only a certain dimension is searched, it can be efficient to calculate 

additionally an index which is completely sorted along this dimension so that 

similarity search of this dimension is possible in logarithmic time, e.g. using binary 

search. It is also possible (but less frequently efficient) to calculate indices which are 

optimized for certain combinations of dimensions. Calculation of additional indices 

for selected (combinations of) dimensions needs additional computational cost. 

Future research can show, under which conditions it is efficient to calculate 

additionally indices which are a priori optimized (e.g. by adapted sorting) for certain 

(combinations of) searched dimensions. 
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Fig. 18. Synchronized index of a DS with 3 dimension databases. Every (short) database record contains 2 

numbers: The "DV number" c represents during index creation the current count of scanned DVs, x4, x8, 

x15 represent the numeric value of the dimension in this DV. The blue lines connect records with values 

from the same DV, 4 DVs are found which contain values at all 3 dimensions. Because c is increasing, the 

connecting blue lines cannot cross and it is possible to scan all dimensions in one pass without 

redundancy. 

 
6.6 Index performance 

The synchronized index was realized for our local database and we measured the 

search time. The time of multidimensional search depends not on the total 

dimensionality of the DS but on the dimensionality of the search (the count of 

simultaneously sought dimensions). Fig. 19 displays the similarity search time (for 

searching the most similar 1000 DVs, sorted along distance) within a 260 

dimensional DS with 1500001 DVs (see 6.4). For each dimensionality 1..10 the 

average search time of 20 searches is shown. 

 
Fig. 19. Average search time in milliseconds (vertical axis) in dependence of the dimensionality of the 

search (horizontal axis) within a DS with 1500001 DVs. 
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The time for every pass of index calculation for this DS was between 23 and 24 

minutes. This implementation was programmed using java jdk-7u4-linux-x64.rpm, 

apache-tomcat-7.0.27.zip, performance was measured on a dedicated server with 

Intel Core i7 3930K (3,20 GHz), 64 GB RAM, 256 GB SSD, with Linux Cent OS 6.3. 

Parallel processing would be possible by splitting the space and reunion of the search 

results. 

 
6.7 Index columns for "long" dimensions which represent more information than usual 

If there is a primary (not branched) dimension, it is efficient (and therefore should be 

usual and preferred practice) to use for it a binary representation with no more bits 

than the bus width of the processor, e.g. 64 bit. If the dimension has to represent 

more information, e.g. a text part larger than tux (e.g. a HTTP URL), it can be most 

efficient to distribute this information over several "conventional" dimensions (of one 

special DS, see Fig. 2), whose bits are combined to a long number which is indexed as 

usually by a single column of the synchronized index, see Fig. 18 . 

 
6.8 Additional index for dimensions which represent longer text 

It is possible to combine numeric search (in numeric dimensions) with additional text 

search in textual dimensions. If such a dimension represents text with multiple parts 

(words) which all should be searchable, then an additional index is necessary, e.g. an 

index of the alphabetically sorted text parts (words), each text part TP associated 

with an increasing list of numbers c (see Fig. 18) of DVs which contain the text part 

TP in this dimension. If scan (Fig. 18) is done only over DVs which have these 

numbers c, all DVs of the search result contain the text TP in this dimension. 

 
6.9 Mapping triples into DVs of DSs, synchronized index for RDF triples 

A RDF triple store can be mapped into a store of DVs of DSs (and the synchronized 

index). Let nmax denote the count of different predicates: 

 Sort triples according to subject and map them bijectively to an increasing 

list of numbers c (see Fig. 18), so that all triples with the same subject have 

the same c (like data (dimensions) of the same DV (group)). 

 Map every predicate bijectively to a dimension of a DS with nmax dimensions 

(or a dimension of DSs whose sum of dimensions is nmax). 

 Map the object bijectively to a value of the dimension. Can be also count of 

different objects (index within database of all objects, e.g. if these are long 

texts). 

So every RDF triple is mapped to one dimension of one DV (with nmax dimensions) 

or DV group (with together nmax dimensions). The synchronized index is suitable 

also in case of high dimensionality nmax. 

7. TOWARDS STANDARDIZED DSS AND DVS 

First recommendations to a web standard for DSs and DVs can be given already in 

this paper. DS definitions can be extended a posteriori. Already defined content 

cannot be changed, but commented. To meet these requirements, keycomment-

pairs can be used. Two keycomments (Fig. 7) are joined together in a keycomment-

pair. The first keycomment should already initially contain a precise and complete 

definition as text, the second keycomment can provide structured changeable 

information. A keycomment-pair has 3 possible states: "draft", "ok", and "deprecated". 

Once the initial (default) state "draft" is left, the first keycomment is fixed. In an 
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appropriate environment this should ensure, that already defined essential content of 

a DS definition is stable. 

 

We now summarize the content of DS definitions and DVs: 

 
7.1 Content of a DS definition 

 String: Domain Space Identifier (DSI): The DSI is given implicitly by the HTTP 

URL of the DS definition. The DSI must be stable 

 "sameAs": algebraic Expression which contains HTTP URLs (DSIs) of other DS or 

DS dimension definitions, if existent. A simple case is another URL with or 

without proportionality factor. 

 keycomment-pair 

 ID of owner (long integer) as searchable dimension 

 String: Information about the distance function 

(e.g. "M" for usage of (11), followed by the exponent k)  

 String with one or several attributes, e.g.:  

o "c" or "connected": if in case of search usually all dimensions are given 

(e.g. search of GPS coordinates or results of a hash function). 

o "f" or "feature extraction": if this is an efficiently searchable feature 

extraction of the other content of the superior DS. 

o "n" or "not designed for search": if content of this DS is usually not 

directly searched (e.g. if in a superior DS combined with another DS with 

attribute "f"). 

 If there is a certain relation between the dimensions (e.g. subject, predicate, 

object as in a LOD triple, see 8.9): keycomment-pair, which describes the relation 

 Sequence of dimension definitions:  

7.1.1 Content of a dimension definition 

a) String: Dimension Identifier (DI): 

To ensure that the dimension has an URL, the HTML id Attribute can be 

used in the form id="DI", where DI is a string which is distinct from the DIs 

of other dimensions of the same DS or the number of this dimension in the 

original order of dimensions. The dimension definition can be regarded as 

definition of a one-dimensional DS. The DSI of this DS is the HTTP URL of 

the dimension. It is formed by the HTTP URL of the DS definition together 

with the DI.  

b) Rank: integer, which shows the rank (order) in representation, if deviating 

from the original order of definition (which is default order). While the 

original order of dimension definitions remains fixed for later compatibility 

(with already existing DVs, see 7.2), rank can be used to define afterwards 

dimensions which appear anterior in (e.g. browser) representations and 

menus. 

c) "sameAs": algebraic Expression which contains HTTP URLs (DSIs) of other 

DS or DS dimension definitions, if existent. A simple case is another URL 
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with or without proportionality factor. Such a factor can be appropriate for 

measurements of the same thing by different units. After this a search engine 

can combine all these data in the same index column (Fig. 18). 

d) keycomment-pair 

e) floating point number: weight (wj in (11) if nested, else rj in (7))  

f) String for content description: 

- if nested (according to section 5): DSI (HTTP URL) of the integrated DS 
 "virtual" dimensions (which are later decided in the DV) are not necessary, because creators of 
DVs can use DV groups 7.3 to complete important additional dimensions. 

- if not nested: HTTP URL (DSI plus DI) of an external dimension definition 

  or (if dimension is defined here): 

 String which describes the content e.g.  

 "integer", "floating-point- precision-8", 

 "date-YYYY-MM-DD", 

 "tux" or "text" (see 6.8),  

 "list" etc. (see 6.2) 

 borders and names of intervals, if given (option "list") 

 optionally an expression which describes this 

 dimension as algebraic result of other dimensions. 

A DS definition can contain additional information, e.g. default preferences for 

representation and formatting of DVs in the Web browser. It is efficient to provide 

DS definitions in (for machine readability) standardized HTML, so that conventional 

web browsers can directly display the content in human-readable form. Similarly 

DVs can be embedded in HTML, with short syntax (as identified numbers), so that 

later people can click in their browser on a (as "Domain Vector") marked text part 

and a (by the DS definition determined) table opens which shows the associated 

quantitative data and further information about the "Domain Space" (=user defined 

metric space on the web).  

 
7.2 Content of a DV 

 String: HTTP URL of the Domain Space definition (DSI) 

 If DV describes an external resource: HTTP URL of this resource 

 keycomment (optional) 

 ID of owner (long integer) as searchable dimension (optional) 

 date: (optional) short input of date is possible without dimension definition, so a 

dimension definition for it is no more necessary, e.g. in the form dyyyy-mm-dd 

contents of given dimensions as semicolon separated list of numbers (this short form 

is possible if the original order of DIs in the DS definition is used) or a sequence of: 

7.2.1 Content of a dimension 

 String: Dimension Identifier (DI) 

The DI is optional, if the order of dimensions corresponds to the order of the 

dimensions in the DS definition, else the DI is necessary. 

 content: 

- if dimension definition nested: integrated DV 
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     or HTTP URL of integrated DV 

- if dimension definition not nested: Value (unbranched), 

    depending on definition (or HTTP URL of integrated DV dimension) 

 after every value its reliability can be quantified e.g. in the form "sd" where d is 

an estimation of the value's standard deviation 

7.3 DV-groups 

DVs can be grouped together, so that one group describes the same resource. Later it 

is possible to combine the dimensions of these DV-groups (i.e. dimensions of different 

DSs) also for search if the search engine uses a synchronized index (see 6.5) for all 

dimensions. This index is not restricted to one DS. So data providers can select 

dimensions which they group together, e.g. to add data which they consider as 

important. For a short syntax the URL of definition is sufficient for multiple 

dimensions as long as the data (dimension) order in the DV corresponds to the order 

of dimension definitions at the URL. If dimensions should be combined which are not 

combined at a URL, the URLs of their definitions need to be combined in the DVs. 

 
7.4 Adaptable syntax: DVs as identified numbers 

The concept can be realized using variable syntax. For example OWL [McGuinness 

2004] and RDF [World Wide Web Consortium 2014] can be used to realize DS 

definitions and DVs. But because in the long run conciseness is relevant for 

feasibility and efficiency, we recommend to start with concise and minimal syntax 

with minimal overhead. Minimal precondition for DVs is that the numbers are 

identified, using the DSI of the DS and the DI of the dimension (see 7.1.1). Because 

at this the dimensions of the same DV should be grouped together, it is sufficient to 

specify the DSI of the DV only once at the beginning of the group. If the default order 

of dimensions of a DSs is inherited, it is even sufficient to use one special character 

as separation between dimension values in DVs (e.g. use a sequence of semicolon 

separated numbers). 

 

At last we prefer as short as possible syntax. Similarly like a hyperlink a DV can 

contain clickable text. A possibility: 
<v http://numericsearch.com/bw.xml; 2014-01-30; 83.914>clickable text</v> 

The initial URL points to the DS definition, if the subsequent 2 values fit to the first 

2 dimensions of the DS, no further identifiers are necessary. 

8. DISCUSSION 

Similarity search of quantitative data in metric spaces is well investigated. Due to 

the potential of this technique it is desirable to enhance the web by metric spaces. A 

DS represents a nestable metric space with unique identifier (HTTP-URL) on the 

web. Because DSs can be defined by web users according to their domain of interest, 

and because of their applicability in Domain Ontologies (see [Haas 2005]) we called 

these "Domain Spaces". The following subsections discuss some important aspects 

(partially derived from [Orthuber 2013]) of the concept: 

 
8.1 Resolution and precision of DV based description and search 

Due to its basal relevance the following fact is given first: 

For a word which is more than grammatically different from other words we need an 

extra definition. But for all (different) DVs which belong to the same DS we need only 
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one definition - the definition of the DS. This definition is usually also more precise 

than the definition of a word, and internationally valid. DSs can be created by web 

users according to their domains of interest, so it is a general approach. There can be 

much more different DVs (even in only one DS) than there are different words. 

Therefore DV based description and search has higher range and resolution than 

word based description and search. 

As described in section 3, DV based description additionally provides information 

about similarity relations of resources. 

 
8.2 Precise information exchange on the web 

An important motivation for this approach is improvement of the availability (this 

means also searchability) of precise information on the web. For description of reality 

usually words of language are used, but they categorize the original quantitative 

features of reality. At this often interesting information gets lost. Even if someone 

wants to provide precise information and explicitly adds quantitative information, e.g. 

as numbers combined with text, up to now usually only the words of the text are 

searchable, not the numeric quantitative information. In many cases just this precise 

quantitative information is interesting for the readers. So it is reasonable to combine 

numbers with unique identifiers, that they are machine readable and searchable. 

This is done in a DV: It contains the DSI (HTTP URL of the DS), which together with 

the DI (Dimensions Identifier, see 7.2.1) or the position in a semicolon separated list 

uniquely identifies the numeric value of every given dimension. 

The DS definition and its identifiers are also a guide for providers (writers) of 

numeric information. Often important numeric data are missing on the web, because 

the writer does not know well the expectations and interests of the reader. The DS 

definition shows the quantitative data, which are in a certain domain interesting for 

the readers. So it serves in this domain as standardized and expandable interface for 

exchange of precise numeric information between writer and reader. Later it is 

possible to provide to dimensions frequencies of usage. 

8.2.1 From DSs derived evaluation DSs 

Correctness is precondition of precision, and is it possible for interested companies 

(e.g. search engines) to give their users the possibility to evaluate every original DV 

by an own "evaluation DV". For this from original DSs automatically "evaluation 

DSs" can be derived, which contain "evaluation dimensions" for every (unbranched) 

value of the original. These evaluation dimensions can branch again as DSs (Fig. 2) 

into values, e.g. "correct value", "|value| / |correct value|" (automatically calculated 

with upper limit), "subjective grading of precision" (0..15) , "subjective grading of 

reliability" (0..15) etc. Every "evaluation DV" of such an "evaluation DS" contains the 

HTTP URL (7.2) of the original evaluated DV as searchable dimension (e.g. for 

statistics) and can be created by every registered user. Because an evaluation DS is 

again a DS, there can be also an evaluation DS of an evaluation DS (if there is 

interest). 

 
8.3 Storage of DS definitions open on the web, storage of DVs on the web and locally 

The implementation shows that realization of user defined DSs and DVs is also 

possible in a local online database with Numeric Search engine. The Vector Location 

(VL, see 4.1) cannot be used in a local database, but the DVs can get a hyperlink to a 
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location on the web, which they describe. So it would be technically feasible to realize 

this Numeric Search also in a local database. 

This is better than nothing, especially if certain data cannot be published openly on 

the web, e.g. patient records with detailed quantitative data about medical findings, 

treatment and treatment outcome. Even if these data are not published, Numeric 

Search and anonymous statistical output of the results (e.g. average values of 

dimensions) can be used for decision support. 

But it requires considerable effort that a local (proprietary) database is used 

internationally. There is relevant probability that several competing databases arise, 

so that Numeric Search is no more internationally complete but restricted to one of 

many proprietary databases (information silos). Therefore we recommend 

introduction of a web standard for worldwide valid DSs whose definitions should be 

always placed open on the web. Their elements (DVs) can be also private (if 

necessary in local databases), but usually DVs should be also placed as open data on 

the web, because this is most informative. Besides making quantitative data 

searchable, DVs (identified numbers, see 7.4) can be also used for interoperable 

exchange of quantitative data in machine readable form. 

 
8.4 Reliability of DS definitions 

The numeric data in a DV are only meaningful together with their definition in the 

DS. Therefore every dimension definition of a DS must be stable. When in the course 

of time a dimension turns out to be no more recommendable for new data, it can be 

marked as "deprecated", and an explanation can be added. For this purpose we 

recommended usage of a keycomment pair (see section 6.7) with a fixed and a 

changeable part. A checksum can be calculated from every fixed part of a dimension 

definition, which can be also integrated in DVs. So change of a definition would be 

detectable. But recovery of a dimension definition is only possible from a backup copy. 

To guarantee reliability, DS definitions can be stored in reliable (official) web sites, 

which are open for read and which allow expansions and changes of DS definitions 

only in non-fixed parts. This signals to providers of numeric data (DVs) that the DS 

definitions are stable. Additionally Numeric Search engines can create backup copies 

of (frequently used) DS definitions on the web and mark changes of DS-definitions.  

 
8.5 Definition of DSs by web users 

To cover the range of topics on the web, those who create the web should be also able 

to routinely define DSs, so that they can make useful definitions about all topics 

which are of common interest. Appropriate Software can considerably facilitate 

generation of DS definitions and DVs, and interpret these. Web users can define DSs 

according to their expertise and domain of interest. They can define the numeric 

content and also the meaning of the hyperlinks (Fig. 7) of keycomments of DVs. The 

owner of a DS can for example define that the first hyperlink of the keycomment (see 

6.1) of every contained DV points to a specific dataset (e.g. a picture, song, data 

generated by software of the DS owner) and the numeric content is a searchable 

specific feature extraction of this dataset. If the feature extraction is appropriate, the 

DV makes the dataset available to DS specific similarity search by all Numeric 

Search engines.  

Different formats are possible as concrete syntax for DS definitions and DVs. 

Because the length of the usual formats can obstruct overview and performance we 

prefer an as short as possible form at least for DVs. The main point is that the 
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numbers in the DVs are identified (see 7.4) so that they can be associated to the 

dimension of a DS. This can be done in varying environment (see e.g. 8.9). 

 
8.6 Equivalent definitions, usage of sameAs 

Before defining a new DS or DS dimension it is important to check existing 

definitions. If there is already a definition which completely covers the intended 

purpose, a new definition is not necessary. If nevertheless a new definition is wished, 

e.g. because the new definition should contain a link to a certain website, it is 

possible to create a new equivalent definition without unnecessary adverse effect, if a 

link to the equivalent definition is inserted using the "sameAs" statement (like 

owl:sameAs [W3C 2004]). This shows to the search engine, that by "sameAs" 

connected identifiers (HTTP URLs of DSs or DS dimensions) refer to the same thing 

and (generation of a synchronized index 6.5 and) search could be done (instead only 

over one identifier) more completely over all connected identifiers together. 

Recommendations for creators of definitions: To find equivalent definitions, existing 

definitions can be checked e.g. by specific text search within (selectable parts of) DS 

definitions. If there is an existing DS (let's call it "DS-owned") and few dimensions 

are missing, this can be told to the DS-owner. The owner can add missing definitions 

to keep the DS attractive. If nevertheless a new definition is necessary, instead of 

defining a DS completely new, it is better to include (see 5.2) suitable DS definitions 

(also DS dimension definitions, see 7.1.1 - e.g. it is possible to include the dimensions 

of "DS-owned"). If instead of inclusion equivalent (re)definition is preferred, 

equivalent definitions should be linked together using the "sameAs" statement. 

Included or (via "sameAs") connected definitions get higher search frequency than 

isolated definitions.  

Recommendations for providers of DVs: To find the most relevant suitable DS for 

quantitative data, search engines can be asked using specific text search within 

(keywords or comments of) DS definitions to get a list of DSs which touch a certain 

Domain or topic. The list can be ordered e.g. by the size of the DSs (the count of 

contained DVs) or search frequency. This can be used to find the most relevant DS 

definition. A check of their definitions can help to find the best fitting DS. 

 
8.7 Nested DS definitions 

According to section 5.2 every DS definition combines dimensions which can 

represent not only numeric values but also again a (part of a) DS definition. This 

possibility allows complex expansions and generates additional similarity relations. 

So e.g. an included DS definition with URL http://example.org/DS1 defines additional 

similarity relations to DVs of the DS http://example.org/DS1 and DVs of all other DSs 

which include the DS http://example.org/DS1 . Because this included DS definition 

again can be nested, ontological structures of DS definitions with high dimensionality 

are possible. Such structured definitions of complex DSs are meaningful due to 

several reasons. Besides the definition of additional connections (similarity relations) 

and reusage of existing definitions they can provide a subdivided and structured 

representation of the domain. So Domain Spaces can also represent user defined 

conceptual spaces which were proposed by Gärdenfors [Gaerdenfors 2000; 2004].  

A special case needs attention: 
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8.7.1 Infinite nesting level 

There is the possibility of a circular definition in a DS: A DS definition (e.g. 

http://example.org/person) can include as dimension again (DS definitions which 

include) the same DS definition (http://example.org/person as friend). Obviously a DV 

of such a DS can provide content (numerical values) only up to a limited count of 

circular expansions. There is, however, the possibility (see 7.2.1) to include into a DV 

as dimension instance the HTTP URL of another DV instead of including directly the 

numerical values. Expansion of the DV is in this case possible until the chain of 

included (HTTP URLs of) DVs stops or (circularly) goes back into itself. For search 

such deep expansions are usually not meaningful. A search engine can at index 

calculation limit the count of circular expansions, or generally limit the nesting level 

which is traced. 

 
8.8 High dimensional DSs 

Extensions and nesting of DSs definitions can soon lead to high dimensional DSs. 

High dimensional similarity search in these spaces tends to become inefficient 

[Aggarwal et al. 2001], but the dimensions can serve as large set of possibilities for 

low dimensional search, and as basis for exchanging quantitative information. High 

dimensional DS definitions can serve as container of many one dimensional DS 

definitions. These are accessible using the HTTP URLs of the dimensions, see 7.1.1. 

So it is possible to reuse and combine dimensions in new nested DSs. 

 
8.9 Application in Linked Open Data (LOD) 

All RDF triples [World Wide Web Consortium 2014] which contain short text (HTTP 

URLs or generally URIs) as subject, predicate and object can be represented as 

elements of a single DS with three "long" dimensions, see 6.7 . The efficiency of DVs 

could be, however, better used by 6.9.  

Generally the triple pattern is only one possibility to describe a relation between 

dimensions. A DS definition contains an ordered set of dimensions (Fig. 1), so it can 

also contain the definition of a certain relation between the dimensions 7.1. 

 

An efficient and simple way to realize connected data (connecting data is motivation 

of the LOD cloud [Bizer et al. 2009]) is to define appropriate DSs for the interesting 

numeric data, and to identify these (e.g. using the form in 7.4), and to group the data 

in a DV together. Then additionally to the connections via hyperlinks these numeric 

data (of a DV) define bidirectional similarity relations ("numeric links") to the 

(numeric data of) other DVs of the same DS (Fig. 4) and (in case of a nested DS 

definition) to the DVs of included DSs. Identifying numbers (as components of DVs) 

provides these connections generally between numeric data on the web. 

 
8.10 Constructing DSs from frequently used dimensions (with medical example) 

Building high dimensional DSs can be reasonable e.g. for providing patterns of 

commonly used dimensions within a large domain, for later construction of derived 

DSs and for special conversation within this large domain. An example: Medicine 

deals with a lot of quantitative data which can be derived from diagnostic 

measurements on the patient, treatment data, result data, derived data (also human 

generated medical classifications) etc.. These quantitative data can be combined as 

dimensions of large expandable DSs which serve as standardized initial container. 

Then statistical data can be obtained by observing, which dimensions (quantitative 

data) of these containers are used by physicians (users) in case of which situation, e.g. 
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ICD diagnosis [WHO 2014] (this can be expanded to all helpful sets of 

distinguishable situations, also again to distinguishable measurement results). Then 

we get for different situations (e.g. diagnoses) frequencies of used dimensions 

(quantitative data, e.g. measurements). This information can be used again by 

physicians (users). If the information about frequently used quantitative data in a 

certain situation is taken into account, there is less probability that important data 

(measurements) are neglected. Additionally the statistics shows natural connections 

between different situations: Situations (diagnoses) with the same most frequently 

used quantitative data (dimensions) can be grouped together. Later DSs can be 

defined from these dimensions and associated to these groups of situations 

(diagnoses) - for better clearness. Because these DSs are derived from natural 

frequencies of used quantitative data (dimensions), they are less dependent on the 

initially used nomenclature for certain situations (human created names of 

diagnoses). They depend on the original natural situation, and they can serve as 

interface for exchange of searchable objective quantitative data in this situation. 

 
8.11 Decision support (with medical example) 

Decision support (concerning measurable reality) is primary motivation for 

information processing. Due to the basal importance of this topic we provide a 

medical example. For decision support the dimensions of a Domain Space can be 

subdivided into 3 parts:  

{1} Preconditions (In Medicine: Findings) 

{2} Decision (In Medicine: Treatment) 

{3} Result  

In daily practice much valuable information arises in medicine, especially 

information about the results after this or that treatment (decision). Up to now most 

of this information gets lost after some time and it is no more available for the 

community. To make it available we need to store a description of 3 states or 

procedures: {1} The precondition (e.g. medical finding), {2} the decision (e.g. selection 

of treatment) and {3} the situation (result) enough time afterwards. (The 

dimensionality of the result {3} can be extended retrospectively, e.g. if additional 

consequences of a treatment become known.) The description of {1}{2}{3} should be 

reproducible, precise and searchable in sufficient resolution. DVs fulfill the 

requirements. If they contain respectively the sequences {1}{2}{3}, users can get 

decision support by searching descriptions of {1} and/or varying {2} and looking for 

the result {3}. Because this deals with quantitative data, immediate statistics "near" 

the searched description are possible, to find the variant {2} which leads to the best 

result {3}. 
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Medical example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 20. Exemplary DS definition to evaluate the relative change of blood pressure{3} in dependence of 

medication {2} in case of a certain individual situation {1}. Only a part of relevant dimensions is shown. 

So it is e.g. possible to check in case of individual preconditions {1} (Fig. 20) 

immediate statistics of result dimensions {3} (e.g. change of blood pressure in Fig. 20) 

in dependence of selected ranges of influencing therapeutic dimensions (e.g. decisions 

{2} like dose of medication in Fig. 20). 

It can be appropriate (medical data are an example for this) to calculate new derived 

DVs from existing DVs. So in medicine the chronological process of health is 

important, therefore it is appropriate to calculate from the original DVs of a certain 

patient derived (often higher dimensional) DVs which summarize measurements and 

changes at a certain interval of time. For this the original DVs need to contain a 

unique pseudonym (e.g. a number) of the patient. 

 

Generally the practical benefit of decision support depends on the completeness of 

available data. In case of simple situations which depend on few dimensions, e.g. 

certain technical data, it is easier to provide enough data for decision support than in 

case of situations which depend on many dimensions. Because real life situations 

contain (of course) too many dimensions for a complete acquisition and description 

using available hardware, approximation is necessary using few dimensions within a 

restricted domain of interest. Finding the most relevant influencing dimensions for a 

certain domain of interest (a DS) can be a demanding process. The completeness of 

these dimensions can be estimated. It is the better, the smaller in case of controlled 

dimensions {1}{2} the standard deviations of the dependent result dimensions {3} are. 

Statistics can be used to detect dependencies. Statistical results are the more reliable, 

the larger the database is. This is one of many arguments for worldwide DSs. 

 

{2} Decision (Treatment) 

{3} Result 

DS:  Cardiovascular Disease 

DS: Result (part of definition) 

{1} Preconditions (Findings) 

Dose of a certain medication 

DS: Treatment (part of definition) 

Systolic blood pressure 

DS: Findings (part of definition) 

Diastolic blood pressure 

 
Age 

Dose / Body weight 

Body weight  

Relative change of systolic blood pressure 

Relative change of diastolic blood pressure 

 
Time in days until this change 
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8.12 Decision support in jurisdiction 

DVs can make legislative text more precise. Similar like for description of medical 

decisions DVs can be also used for description of judgments and (internationally) 

large searchable web collections of judgments can be built. So it would be possible for 

judges to compare existing cases to past cases in the collections more precisely and to 

check past judgments. This could help jurisdiction towards better reproducibility and 

precision. 

Like in medicine, also in jurisdiction there are far reaching possibilities, also 

concerning usage of support by algorithms which use DVs as input and output. It 

would exceed the scope of this paper to deepen this here. 

 
8.13 Graphical representation of DVs 

A DV can represent information more precisely than a word of language. DVs can be 

embedded into HTML, after click on it the definition of every used dimension can be 

shown. There are many possibilities for graphical representation of the quantitative 

data. For example the value of every dimension can be represented graphically in 

comparison with the values of other DVs of this DS, together with graphical 

representation of statistical information (e.g. percentile, count of standard deviations 

from the mean etc.). A further possibility is e.g. graphical representation of 

comparisons of DVs. 

 
8.14 Scientific communication, impact factor of published data 

Scientists who make research within a special domain can define DSs of their 

specialty whose dimensions represent measurements and statistical results which 

are interesting in their group. By looking at DS definitions and statistics scientists 

get information about searched data already before deciding for a measurement. 

Appropriately defined DSs allow scientists to search and extract just the data which 

they need. 

 

Obviously DSs provide efficient means for storing, and exchanging scientific data in 

searchable form. Scientists can publish (not only articles but also) quantitative data 

in DSs of their specialty. Authors of scientific articles can make citations of such 

published quantitative data (and optionally estimate, how much percent these data 

contributed to the results of the article). This can form the basis of an impact factor 

of published data. 

 

The frequently used Journal Impact Factor (JIF) is only one possibility and only one 

dimension of a possible multidimensional quantification of scientific impact which 

could be mapped into a Domain Space. 

 
8.15 Comparison to the Vector Space Model in information retrieval 

Up to now the Vector Space Model in information retrieval is mainly used to compare 

text documents [Wikipedia: Vector space model 2014]. Vectors which represent text 

documents represent quantitative data of these texts (e.g. frequencies of keywords), 

so these can be seen a special case of Domain Vectors. 

 
8.16 To the efficiency of the concept 

Every DV (element of a DS) is represented by an URL plus an ordered sequence of 

numbers. One definition (of a DS) is enough to define every element (DV), not only 
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one element (or word). Therefore a huge extension of the vocabulary is possible. The 

in the introduction 1 given compact form 

"HTTP URL plus sequence of values" 

is sufficient for definition of a DV due to the well defined sequence of dimensions and 

the HTTP URL of a DS definition. The URL and every given value are also necessary, 

i.e. redundancy is avoided, if wished [7.2.1] . 

 
8.17 "Quantified" text with DVs as words 

Important part of a DV [7.2] is the HTTP URL of the (definition of the) containing DS. 

We can arrange, that in case of certain URL names only a certain part is shown, e.g. 

if the URL has the form part1--part2--part3 then only part2 is shown. Part2 can be a 

usual word of language, e.g. "go". Then the URL "part1--go--part3" could locate a DS 

definition with the first dimension "speed in km/h", and every DV of this DS is shown 

by the word "go", formatted as DV, and click on it shows all given quantities, e.g. "5 = 

speed in km/h". So DVs could become part of "quantified" text, which contains 

"quantified" words which provide additional quantitative information. 

Additionally the DS Definitions at URLs with form part1--part2--part3 can contain 

translations translatedpart2 of part2 in other languages, where at the URLs part1--

translatedpart2--part3 a link to part1--part2--part3 is given. If wished, after input of 

part2 text software can automatically create DVs with URL part1--part2--part3, click 

on these DVs could show besides possible quantitative data also translations. 

(Already today a text viewer could generate from a word "part2" a link to a URL 

part1--part2--part3, where translations of part2 could be placed.) 

 
8.18 Motivation for owners of DSs 

Motivation for the owners of DSs definitions is better communication within their 

domain of interest, and the possibility to expand the DSs subsequently by additional 

interesting dimensions. Moreover owners can modify the changeable part of DS 

definitions (see 6.7) and provide links e.g. to their web pages. 

 

Patents on DS definitions, however, should not be possible. The reason for this is 

given in the following remark: 

 
8.19 Language is not patentable 

There must be open access to DS definitions so that they can be valid world wide. The 

proposed standard for worldwide valid DSs allows to include (reuse) DS definitions in 

new definitions and to extend definitions a posteriori. The approach is designed for 

free and efficient usage of data on the web. Patents on DS definitions would 

contradict this purpose. Moreover: DSs define precise quantitative descriptions 

worldwide. This can be seen as an extension of language. Patents on (parts of) 

language are not possible. Therefore patents (or "copyright" etc.) on DSs definitions 

and contained DVs should not be possible. 

 

9. CONCLUSION 

DSs can be defined by web users according to their domains of interest. Their 

elements, the DVs, identify quantitative data and so make these data machine 

readable and searchable. Nested DS definitions realize hierarchical ontologic 

structures, where common identifiers (HTTP URLs) of dimensions provide 
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connections between different DSs and enable general similarity search of 

quantitative data on the web. DV based description and search (Numeric Search) can 

become an important addition to usual word based description and search on the web. 

Therefore the introduction of a web standard for worldwide valid DS definitions and 

DVs is recommendable. 
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