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1 Foundation 
Subject of mathematical physics is the study of measurable resp. perceptible reality 
and to find a suitable model for it. Because measurable reality belongs to past, it is a 
priori finite and a mathematical model for it also must be a priori finite, i.e. the 
underlying numerical space and the number of operations on it must be finite. 
Nevertheless both can increase without boundary when time increases without boundary (infinite 
potential). 

One possibility for representation of this space are finite dimensional numerical 
lattices, i.e. sets of numbers defined on finite dimensional point lattices. This program 
handles such numerical lattices. All points are addressed by integer coordinates and 
the numbers resp. quantities  assigned to the points can be complex rational. 
Subsequently by the term lattice  always this kind of numerical lattice is meant. 
 

2 Purpose of this program 
Using this program you can view and edit one or several multidimensional lattices. 
(In this version every lattice has up to 30 free (space-like) dimensions plus one "lattice-index" plus one 
time-like dimension, see below) 

Furthermore you can study the results of numerical algorithms on these lattices. The 
aim is to find algorithms whose results correspond to experimental results better and 
better. 
 
We have to make small steps: Up to now important physical equations are usually 
written as partial differential equations which work on continuous (a priori infinite) 
sets. If we try to find the natural finite basis of those equations, first we have to 
replace ordinary differential calculus by finite difference framework. This can soon 
lead to difficult combinatorics, especially in case of interactions across several 
dimensions. Often there are many possibilities for transfer a differential equation into 
finite difference framework. This means that there are also many possibilities for its 
implementation as algorithm (e.g. in Algadd, see below). A numerical test of the 
chosen possibility gives additional information. So I hope this program can help us to 
find the right algorithm. 
 
 

3 Start of program 
You can start the program by double clicking on wqp.exe  
 
 

3.1 Start parameter 
It is possible to initially load a *.aa1 file by using its name as start parameter of the 
program. For example the call 
wqp.exe test.aa1 
will start the program and will cause it to initially load the file "test.aa1" 
 



 
3.1.1 Uniform default configuration 

The filename wqpcfg.aa1  is reserved. This file contains the uniform default 
configuration (all entries marked by "u" in Config). If it exists in the current directory, 
uniform configuration data (but not other data like lattice quantities, Algadd definition 
etc.) will be read automatically from it after every input of another file as uniform 
default configuration. So also if another file is specified as start parameter of the 
program, the other file will determine all program data but not uniform configuration 
data which are determined by wqpcfg.aa1 . Usually this is convenient to force 
uniform behavior of the program. 
If you prefer to determine (like all other data) also uniform configuration data individually by the *.aa1 
file, use the item "read indiv." instead of "open" within the file menu. If you always want to use the 
individual configuration, simply remove wqpcfg.aa1 from the current directory (e.g. by using the 
corresponding item "Del Cfg File" in the File menu. 
 
 

4 Table sheets 
The table sheets provide tools for modification or check of lattice quantities and other 
program data: 
 
 

4.1 Lattices 
Here you can edit the lattice(s). Initially all lattice quantities are by default 0. This 
convention (that the quantity at every "untouched" coordinate is 0) allows the 
handling of the lattice(s) by a computer and is adequate because a lattice exists not 
a priori but has to be created by execution of branching algorithms on it. The shown 
tables allow numerical input and (as short cut) increment resp. decrement of the 
quantity under cursor by pressing the "p" resp. "m" key. 
 
 
4.1.1 The table "dim   offset" 

The table "dim  offset" permits integer input in the column "offset" which specify the 
integer coordinates components of the lattice points. These coordinates (2 special 
and up to 30 free coordinates) specify one single point. If the cursor is in the "offset" 
column, you can choose by pressing "x" or "y" two coordinates, along which the 
lattice(s) can be displayed in the table "quantities" (see below) within a subrange. So 
you can select, visualize end edit every two dimensional subset of the lattice(s). At 
this the integer coordinates at "x" and "y" in the "offset" column specify the starting 
coordinates of table "quantities", i.e. the location of the right table within this two 
dimensional subspace. The free coordinates are simply numbered from 1 to 30, as 
name we will choose k1...k30, two additional coordinates (named l and n) have a 
special meaning: 

The coordinate l is a lattice-index resp. name. It can be a powerful aid because it 
allows to combine an (nearly) arbitrary (!) number of multidimensional lattices, 
each having its individual lattice-index l. By combining many lattices you can 
study results of algorithms with total complexity far beyond reach of human 
brain (initially the situation may be not too complicated - so try to avoid too 
many different l). 
The coordinate l has no quantitative meaning: every index l has to be 
understood as a name (of a lattice). If you combine two lattice, you can use l=0 
in all coordinates of the first and l=1  in all coordinates of the second as well as 
l=-134652 in all coordinates of the first and l=999 in all coordinates for the 
second. Not the absolute value of l is relevant - but relevant is the fact, that the 
same index l indicate the same name resp. lattice and different l indicate 
different names resp. lattices. The reservation of l for this purpose can also 



facilitate the discrete implementation of physical equations which connect 
different kinds of physical quantities (quantities with different names). For 
implementation of complex algorithms it can be useful to lattice-index different 
components of a quantity by different l. So for example you can assign indices 
l=0,1,2,3,4,5 to Ex,Ey,Ez,Bx,By,Bz for discretization of the Maxwell Equations. 

The coordinate n is intentioned as (global) time-like coordinate, i.e. every algorithm 
which uses quantities whose n is smaller or equal to n0 (n<=n0) should only 
influence quantities whose n is greater than n0 (n>n0) (in Algadd handling is 
even more restrictive: per iteration of algadd only quantities with n=nlast 
(maximal n) are used and influence only new quantities with n=nlast+1). If the 
algadd algorithm is so defined that its iterations of are conform to progress of 
time, this means from physical point of view that nlast always increases if some 
proper time increases. It represents the fastest possibility of any proper time. 

The Mod menu provides means to move and copy all or some lattice quantities along n. Internally all 
lattices are organized in map which is ordered along n=k0; all other coordinates (k1...k30, l) have less 
priority. 
 
 

4.1.2 The table "quantities" 
The table "quantities" represents the quantities on the specified coordinates of the 
chosen lattice. It allows input of complex rational numbers (e.g. 1; 1i; 1/2, 1/2i = 
(1/2)i; 1/12+5/16i = 1/12+(5/16)i ...)) and of complex floating point numbers (e.g. 
2E3=2000; 1.2+3.01E1i = 1.2+30.1i ...). Note that the conversion of rational to 
floating point as irreversible due to possible loss of information (e.g. the conversion of 
1/3 to 0.3333...). Consequent working with rational numbers can preserve exactness. 
Of course clearness may be lost in case of rational numbers with many digits. If there 
are more than 10 necessary digits for numerator or denominator of a rational 
number, the implemented arithmetic automatically converts it to floating point. This is 
also done to prevent overflow. 
The possibility of using complex rational numbers (with imaginary part) is offered as bridge to current 
concepts and should make usage more convenient. A detailed combinatorial analysis with 
replacement of complex rational numbers by pairs of rational numbers is always possible by using 
additional free dimensions and/or additionally indexed lattices and remembering that complex 
(rational) numbers can be represented by (rational) 2x2 matrices. 
 

4.2 List 
In case of complex multidimensional lattices it may be difficult to estimate occupation 
of the lattices alone by looking at two-dimensional subspaces. Therefore you can get 
a complete (along n ordered) listing of all occupied (i.e. non-zero) lattice points in the 
List table sheet. Scrolling is possible by using the PgUp-, PgDown- and Arrow-Keys. 
If you click the right mouse button on the listing, you can specify a new n_start. 
 

4.3 Comment 
Here you can edit a comment to your specification (of algadd parameters, 
configuration etc.). If you save your specification (using the file menu), this comment 
will be also saved. 
 



 

4.4 Algadd 
The concept of this algorithm is simple and nevertheless very general. Among others it can be used to implement (superpositions of) generalized 
random walks. Generalized because p is not restricted to [0, 1] like an usual probability. It can also be a complex number, e.g. a probability 
amplitude. The second order finite difference along the location coordinate index k of a symmetric Bernoulli random walk is equal to the first order 
finite difference along n like in the Schroedinger equation (cf. footnote on page 13 of http://arxiv.org/abs/quant-ph/0207045 ). This is also valid for 
linear combinations of these random walks (negative combinations can lead to finite differences) which can be also simulated by algadd. 
 

By using the "algadd" algorithm you can add all last quantities of the lattices (all 
quantities whose n is maximal, i.e. n=nlast) to the next (new) lattice points (i.e. with 
n=nlast+1). Because of this convention every existing quantity remains untouched 
(for documentation of development). 
(That's no restriction because parallel to criss-cross addition you can also add  the original quantities to the same place in nlast+1, i.e. to the same 
other coordinates except coo[0]=k0=nlast+1) 

 
Every algadd algorithm is defined by one table which can be edited here. 
A menu for making general changes appears after pressing the right mouse button. 

Each column of the table represents one entry which specifies one addition. Every 
entry contains: 
 

aanr: 
You can combine several algadds, i.e. algadd algorithms with different definitions by 
data in several different tables. The index aanr in the left column is the index of the 
algadd table. You can change it by pressing 'Q' or 'W', by pressing the right mouse 
button and by using the "Alg" Menu. The other columns contain entries and the first 
of their cells the index of the entry. In the current version more than 200 entries 
(additions per iteration) are possible - there is much freedom for experiments. 
 

p: 
The propagator which is the factor by which every copied 
(copy, because the original quantity remains unchanged so that development remains visible, see above) 

non-zero quantity with n=nlast is multiplied before addition. The name propagator for 
p is appropriate because it determines the extent of the propagation from the source 
to the destination lattice. 
There is a relationship to the Feynman propagator, but p is elementary because it propagates along minimal dn (resp. dt) and every p represents 
with its entry exactly one component of the total propagation (which can have many components). Furthermore it does not propagate to n<nlast 
resp. past. - according to the definition of the word past.. 

p is the only complex number in the table, all other numbers are integer. Of course 
only those entries with non-zero p have relevance (the other are "empty" and can be 
ignored). 
If 0<p<1 and if the sum over all p is 1, we may interpret p as probability in the usual sense. More 
detailed analysis has to consider that per perception more than one step is necessary. If e.g. 2 steps 
are necessary, probability can arise from multiplication of two (sums of) p. 

 
 
ldest: 

lattice-index of the destination (you can use it as index of the destination lattice). 
 
l: 

lattice-index of the source (you can use it as index of the source lattice), i.e. only if l 
of the source quantity is the same, then it is multiplied and added. 

 
dn, dk1,...,dk30: 

Relative offset of the destiny coordinate. Because per iteration the last quantities 
(with n=nlast) are added to the "next" or "future" quantities (with n=nlast+1), the offset 
of  n always is 1. 
 
Example: Suppose, n=3 is the last row of the lattice with non-zero quantities and 
some entries of algadd, e.g. entries no. 0,1,2 have the following properties: 
p       1/2i     -1/2i       1 



ldest    1         0         0 

l        0         1         0 

dn       1         1         0 

dk1      1        -1         0 

dk2      0         0         0 

dk3      0         0         0 

dk4      0         0         0 

... 

This means: 
Every non-zero quantity with n=3 and l=0 is 

- copied, the copy is multiplied by  (1/2i) and added to the quantity with l=1, n=4, 
with k1 greater by 1 and with the same other coordinates. 

- copied, the copy is multiplied by 1 and added to the quantity with l=0, n=4 and the 
same other coordinates. 

and every non-zero quantity with n=3 and l=1 is 
- copied, the copy is multiplied by -(1/2i) and added to the quantity with l=0, n=4, 

with k1 smaller by 1 and with the same other coordinates. 
 
If you read this for the first time, this may seem difficult, but it's only a general 
approach which offers very much possibilities and often relatively simple possibilities 
are the most important. 
 
For example suppose that the lattice 0 contains the quantity 1 in one point P and 
zero quantities anywhere else and the non empty algadd parameters are 
p       1         1 

ldest   0         0 

l       0         0 

dn      1         1 

dk1     1        -1 

dk2     0         0 

dk3     0         0 

... 

This will produce the Pascal triangle, beginning in P. If we replace p by 1/2 we get 
the symmetric binomial distribution, beginning in P. 
 
Similar algadd parameters 
p       1        -1 

ldest   0         0 

l       0         0 

dn      1         1 

dk1     1         0 

dk2     0         0 

dk3     0         0 

... 

will produce a first order finite difference along coordinate 1. 
 
Another possibility for this is 
p     -1/2       1/2 

ldest   0         0 

l       0         0 

dn      1         1 

dk1     1        -1 

dk2     0         0 

dk3     0         0 

... 

The differences between these possibilities of discrete differentiation are neglected 
by analytical considerations. But all possibilities of analytical differentiation can be 
translated into discrete differentiation. 
 
For example we can identify coordinates 1, 2, 3 with x, y, z and 



p     -1/2       1/2      -1/2       1/2      -1/2       1/2 

ldest   1         1         2         2         3         3 

l       0         0         0         0         0         0 

dn      1         1         1         1         1         1 

dk1     1        -1         0         0         0         0 

dk2     0         0         1        -1         0         0 

dk3     0         0         0         0         1        -1 

dk4     0         0         0         0         0         0 

... 

will produce a three dimensional gradient of the last quantities with l=0. The 
components d/dx, d/dy, d/dz of the gradient are indexed by l = 1, 2, 3. 
 
Similarly a possibility for a discrete rot operator (with dest. coordinates indexed by l = 
3, 4, 5) is 
p     -1/2   1/2   1/2  -1/2   1/2  -1/2  -1/2   1/2  -1/2   1/2   1/2  -1/2 

ldest   4     4     5     5     3     3     5     5     3     3     4     4  

l       0     0     0     0     1     1     1     1     2     2     2     2  

dn      1     1     1     1     1     1     1     1     1     1     1     1  

dk1     0     0     0     0     0     0     1    -1     0     0     1    -1  

dk2     0     0     1    -1     0     0     0     0     1    -1     0     0  

dk3     1    -1     0     0     1    -1     0     0     0     0     0     0  

dk4     0     0     0     0     0     0     0     0     0     0     0     0  

... 

Obviously the algadd algorithm model is rather flexible. 
 
In the above examples the absolute propagator |p| is arbitrary chosen. Its right choice is dependent on 
the units (dimensions) of the underlying quantities and has to be adapted. In case of analytical 
considerations the right value of |p| is usually derived from experimental results, e.g. as physical 
constant. Discrete considerations can give deeper understanding of the realistic combinatorics. 
Particularly the investigation of dimensionless dependences and the accompanying proportionality 
factors can be interesting. 
 
Because there is much freedom in designing the variables of the algorithm, it may suffice for an initial 
step towards a reality conform description. It can only suffice for further steps, if these variables 
(especially p) don't change with increasing n in physical reality, i.e. if they are always the same as in 
the initial step. If this is not the case it would be possible to expand the scheme as soon as we have 
more concrete information. For example we can define variables like p as functions of previous lattice 
quantities. After all we should not forget, that variables like p, which can be interpreted as probability, 
are mean average quantities. They are determined during a concrete experiment and it is reasonable 
to assume that free will has limited influence on that, if conservation laws are not violated (e.g. due to 
anti symmetrical influence). 
 
 

4.5 Sums1 
For all lattices and two selectable subspaces of it the sums over all lattice quantities 
q are displayed together with their count (=cnt) and their mean (sum q/cnt). The 
same is done for their absolute squares |q|^2 and for all quotients between the sums 
over both subspaces and the total sum. When specifying the subspaces or "ranges" 
1 resp. 2 by entering the minima and maxima coordinates (Min 1,Max 1 resp. Min 2, 
Max 2) for every dimension in the left table, you can indicate "no lower limit" by typing 
"-" as Min, and "no upper limit" by typing "+" as Max. 
 
By typing "X" in the left table (with "Range") you can choose the x-coordinate of both 
range 1 and range 2  ("x1 x2") for representation in the table sheet Graph1 . By 
typing "A" you choose it for range 1 ("x1"), by typing "B" for range 2 ("x2"). By typing 
"Y" you can also define the y-coordinate for the 2D Graph2 . By typing "C" you 
choose it for range 1 ("y2"), by typing "D" for range 2 ("y2"). 
 
You can define and activate several pairs of ranges (Range1, Range2) by changing 
the index of the defining table. This index is displayed in the first cell of the left 
column. Similarly like aanr you can change it by pressing 'Q' or 'W'. 
 
After pressing the right mouse button a menu appears which offers some useful 
possibilities for quick initialization of the ranges. 
 



 

4.6 Sums2 
For every lattice-index l the sums over all lattice quantities q and separately also over 
those with n=0, 1 (selectable) and nlast, nlast-1 are displayed together with their 
count (=cnt) and their mean (sum q/cnt). The same is done for their absolute squares 
|q|^2. 
 
 

4.7 Graph1 
The Sums over the ranges defined in the Sums1 sheet are displayed along (in 
dependence of) the integer coordinate x specified in the left table of Sums1. 
By clicking on the colored check boxes you can plot the graph for 
cntAt = count at the coordinate(s) 
     (can be greater than 1, if sums1 specifies a multidimensional range) 

Re(q) = real part of q at x 
Im(q) = imaginary part of q at x 
|q|^2 = squared absolute value of q at x 
|q|   = absolute value of q at x 
for range 1 of left table in the Sums1 sheet (left 5 checkboxes) and 
for range 2 of left table in the Sums1 sheet (right 5 checkboxes). 
 
If option "Graph1_divmode" is set to 1, all these quantities are divided by the total 
fitting count cnt; if this option is set to 2, the quantities v1 of range1 are divided by 
those of range2 with convention v1/0:=0. 
 
If the option "Graph1_BarDoubleWidth" is true and only every second integer of 
coordinate x is non-zero, the widths of the bars are doubled due to better visibility. In 
this case a red "d" appears in the checkbox line. 
 
If two Curves are plotted, a white Label with "T" (if normal mode) becomes visible 
between the checkboxes of range 1 and 2. If you click on it, it changes to "o" and a 
parameter-plot of both curves is generated, in which x=y1 (y of the first curve) and 
y=y2 (y of the second curve). 
(The symbol "o" is used because this parameter plot option often is used to display circular curves.) 

 
 

4.8 Graph2 
Graph2 is the 2D variant of Graph1: The Sums over the ranges defined in the Sums1 
sheet are displayed along (in dependence of) the two integer coordinates x and y 
specified in the left table of Sums1. Due to 2D visualization the quantity q is not 
represented by the y-coordinate of a plot but by the brightness of a color. 
When clicking on the radio button you can generate the graph for 
cntAt = count at the coordinate(s) 
     (can be greater than 1, if sums1 specifies a multidimensional range) 

Re(q) = real part of quantity at x, y 
Im(q) = real part of quantity at x, y 
|q|^2 = squared absolute value of q at x, y 
|q|   = absolute value of q at x, y 
for range 1 of left table in the Sums1 sheet (left 5 checkboxes) and 
for range 2 of left table in the Sums1 sheet (right 5 checkboxes). 
 
The same can be done for the quantities divided by the total fitting count cnt if option 
"Graph2_divide_y_by_count" is activated in the Config sheet. 
 



If option "Graph2_BoxDoubleWidth" is true and only every second integer is non-
zero, the widths of the boxes are doubled due to better visibility. In this case a red "d" 
appears in the checkbox line. 
 
By clicking on the button "set ny:..." in the upper left corner you can activate another 
plot mode in which multiple 1D plots (one for maximal ny different quantities of y) are 
possible. Blue plots are activated/deactivated be clicking on one of the entries in the 
left table. By double clicking red plots are activated. By pressing the right mouse 
button within the table a menu for simultaneous selection / unselection of all plots is 
activated. If in the configuration "Graph2a_max_dypix_per_plot" and 
"Graph2a_max_dypix_percent" are greater than 0, the plots are shifted along y and 
so better distinguishable; in this case the y scaling is valid only for plot 1. 
 
 

4.9 Config 
Using this sheet you can check and adjust all configuration parameters to your own 
needs. If the file "wqpcfg.aa1" exists in the current directory, all parameters marked 
by "u" (in the r-column) are initially read from it. They define the uniform default 
configuration. 
 

5 Menus 
Using the menus you can save data, start algorithms etc: 
 
 

5.1 File menu 
For writing / reading all data (lattice quantities, algorithm parameters, configuration) 
to / from an file with name *.aa1  in ASCII format. Also for default initialization (cf. 
wqpcfg.aa1) and for determination of warning level. 
 
It is possible to specify an initial filename by using it as start parameter of the 
program. 
 
 

5.2 Cmd menu 
Especially for global commands on the lattices like copying, moving along n, deletion 
etc... There is also the possibility to delete those last (n=nlast) lattice points which 
have the smallest |q|. This can be necessary to branching algorithms without too 
much memory consumption. 
 
 

5.3 Mod menu 
For global modifications on the lattices like initialization, conversion etc...  
 



 

5.4 Alg menu 
For starting the algorithms, especially for starting of the algadds 0...15, i.e. the algadd 
algorithms defined by tables 0...15. 
Due to quick handling of different definitions of Algadd you can start algadd 0, 1, 2 
directly. For start of the rest of the algadds you first change  aanr  (the table index) 
and then use "Start algadd". Note that start is not possible (grey menu items) if the 
corresponding algadd table contains only zero entries. 
 
If the item "algadd with del" is chosen, after every iteration of algadd all entries of the 
lattices are deleted except those with maximal n=nlast. This is useful if there is not 
enough memory in the computer hardware. If a graph along n (defined by Sums1) is 
wished, the deletion may be restricted to those entries outside Sums1 (option "AA del 
outside S1"). This is also valid for option "AA Tracking Mode" which additionally 
automatically deletes the smallest "DelSmallPercent_Default" (->config) percent 
iteratively every time when more than "Algadd_TM_DelSmallestAfterKB" (->config) 
are allocated. This can be convenient to keep track of longer memory wasting 
developments. 
 
The menu also provides means for copying and changing algadd definitions (tables). 
 

5.5 Help menu 
For start of help. 
 
 

5.6 A:... 
Shows index of the current algadd table index. By clicking on it you can change it. 
 
 

5.7 S:... 
Shows index of the current Sums1 table index. By clicking on it you can change it. 
 
 

5.8 C or (C) 
C indicates that wqpcfg.aa1 exists in the current directory, (C) indicates that it does 
not. If the file exists, its contents are used as uniform default configuration, if not, the 
configuration is used which is saved in individual .aa1 files. 
 
 

5.9 US 
This menu activates the user form with code in the unit wqpus1.cpp. If you want to 
write own code, e.g. for implementation of own special algorithms, it is 
recommendable that you place your code in this separate file to ensure well defined 
program structure also in case of further versions. 
 
 


