
Help for wqp.exe

Contents

Foundation:
Purpose of this program:

Start of program:
 Start parameter:
 Uniform default configuration:

Table sheets:
 Lattices:
 List:
 The table "dim offset":
 The table "quantities":
 Comment:
 Algadd:
 Sums1:
 Sums2:
 Graph1:
 Graph2:
 Config:

Menus:
 File:
 Cmd:
 Mod:
 Alg:
 Help:
 A:...:
 S:...;
 C or (C):
 US:

1 Foundation
Subject of mathematical physics is the study of measurable resp. perceptible reality
and to find a suitable model for it. Because measurable reality belongs to past, it is a
priori finite and a mathematical model for it also must be a priori finite, i.e. the
underlying numerical space and the number of operations on it must be finite.
Nevertheless both can increase without boundary when time increases without boundary (infinite
potential).

One possibility for representation of this space are finite dimensional numerical
lattices, i.e. sets of numbers defined on finite dimensional point lattices. This program
handles such numerical lattices. All points are addressed by integer coordinates and
the numbers resp. quantities assigned to the points can be complex rational.
Subsequently by the term lattice always this kind of numerical lattice is meant.

2 Purpose of this program
Using this program you can view and edit one or several multidimensional lattices.
(In this version every lattice has up to 30 free (space-like) dimensions plus one "lattice-index" plus one
time-like dimension, see below)

Furthermore you can study the results of numerical algorithms on these lattices. The
aim is to find algorithms whose results correspond to experimental results better and
better.

We have to make small steps: Up to now important physical equations are usually
written as partial differential equations which work on continuous (a priori infinite)
sets. If we try to find the natural finite basis of those equations, first we have to
replace ordinary differential calculus by finite difference framework. This can soon
lead to difficult combinatorics, especially in case of interactions across several
dimensions. Often there are many possibilities for transfer a differential equation into
finite difference framework. This means that there are also many possibilities for its
implementation as algorithm (e.g. in Algadd, see below). A numerical test of the
chosen possibility gives additional information. So I hope this program can help us to
find the right algorithm.

3 Start of program
You can start the program by double clicking on wqp.exe

3.1 Start parameter
It is possible to initially load a *.aa1 file by using its name as start parameter of the
program. For example the call
wqp.exe test.aa1
will start the program and will cause it to initially load the file "test.aa1"

3.1.1 Uniform default configuration

The filename wqpcfg.aa1 is reserved. This file contains the uniform default
configuration (all entries marked by "u" in Config). If it exists in the current directory,
uniform configuration data (but not other data like lattice quantities, Algadd definition
etc.) will be read automatically from it after every input of another file as uniform
default configuration. So also if another file is specified as start parameter of the
program, the other file will determine all program data but not uniform configuration
data which are determined by wqpcfg.aa1 . Usually this is convenient to force
uniform behavior of the program.
If you prefer to determine (like all other data) also uniform configuration data individually by the *.aa1
file, use the item "read indiv." instead of "open" within the file menu. If you always want to use the
individual configuration, simply remove wqpcfg.aa1 from the current directory (e.g. by using the
corresponding item "Del Cfg File" in the File menu.

4 Table sheets
The table sheets provide tools for modification or check of lattice quantities and other
program data:

4.1 Lattices
Here you can edit the lattice(s). Initially all lattice quantities are by default 0. This
convention (that the quantity at every "untouched" coordinate is 0) allows the
handling of the lattice(s) by a computer and is adequate because a lattice exists not
a priori but has to be created by execution of branching algorithms on it. The shown
tables allow numerical input and (as short cut) increment resp. decrement of the
quantity under cursor by pressing the "p" resp. "m" key.

4.1.1 The table "dim offset"

The table "dim offset" permits integer input in the column "offset" which specify the
integer coordinates components of the lattice points. These coordinates (2 special
and up to 30 free coordinates) specify one single point. If the cursor is in the "offset"
column, you can choose by pressing "x" or "y" two coordinates, along which the
lattice(s) can be displayed in the table "quantities" (see below) within a subrange. So
you can select, visualize end edit every two dimensional subset of the lattice(s). At
this the integer coordinates at "x" and "y" in the "offset" column specify the starting
coordinates of table "quantities", i.e. the location of the right table within this two
dimensional subspace. The free coordinates are simply numbered from 1 to 30, as
name we will choose k1...k30, two additional coordinates (named l and n) have a
special meaning:

The coordinate l is a lattice-index resp. name. It can be a powerful aid because it
allows to combine an (nearly) arbitrary (!) number of multidimensional lattices,
each having its individual lattice-index l. By combining many lattices you can
study results of algorithms with total complexity far beyond reach of human
brain (initially the situation may be not too complicated - so try to avoid too
many different l).
The coordinate l has no quantitative meaning: every index l has to be
understood as a name (of a lattice). If you combine two lattice, you can use l=0
in all coordinates of the first and l=1 in all coordinates of the second as well as
l=-134652 in all coordinates of the first and l=999 in all coordinates for the
second. Not the absolute value of l is relevant - but relevant is the fact, that the
same index l indicate the same name resp. lattice and different l indicate
different names resp. lattices. The reservation of l for this purpose can also

facilitate the discrete implementation of physical equations which connect
different kinds of physical quantities (quantities with different names). For
implementation of complex algorithms it can be useful to lattice-index different
components of a quantity by different l. So for example you can assign indices
l=0,1,2,3,4,5 to Ex,Ey,Ez,Bx,By,Bz for discretization of the Maxwell Equations.

The coordinate n is intentioned as (global) time-like coordinate, i.e. every algorithm
which uses quantities whose n is smaller or equal to n0 (n<=n0) should only
influence quantities whose n is greater than n0 (n>n0) (in Algadd handling is
even more restrictive: per iteration of algadd only quantities with n=nlast
(maximal n) are used and influence only new quantities with n=nlast+1). If the
algadd algorithm is so defined that its iterations of are conform to progress of
time, this means from physical point of view that nlast always increases if some
proper time increases. It represents the fastest possibility of any proper time.

The Mod menu provides means to move and copy all or some lattice quantities along n. Internally all
lattices are organized in map which is ordered along n=k0; all other coordinates (k1...k30, l) have less
priority.

4.1.2 The table "quantities"
The table "quantities" represents the quantities on the specified coordinates of the
chosen lattice. It allows input of complex rational numbers (e.g. 1; 1i; 1/2, 1/2i =
(1/2)i; 1/12+5/16i = 1/12+(5/16)i ...)) and of complex floating point numbers (e.g.
2E3=2000; 1.2+3.01E1i = 1.2+30.1i ...). Note that the conversion of rational to
floating point as irreversible due to possible loss of information (e.g. the conversion of
1/3 to 0.3333...). Consequent working with rational numbers can preserve exactness.
Of course clearness may be lost in case of rational numbers with many digits. If there
are more than 10 necessary digits for numerator or denominator of a rational
number, the implemented arithmetic automatically converts it to floating point. This is
also done to prevent overflow.
The possibility of using complex rational numbers (with imaginary part) is offered as bridge to current
concepts and should make usage more convenient. A detailed combinatorial analysis with
replacement of complex rational numbers by pairs of rational numbers is always possible by using
additional free dimensions and/or additionally indexed lattices and remembering that complex
(rational) numbers can be represented by (rational) 2x2 matrices.

4.2 List
In case of complex multidimensional lattices it may be difficult to estimate occupation
of the lattices alone by looking at two-dimensional subspaces. Therefore you can get
a complete (along n ordered) listing of all occupied (i.e. non-zero) lattice points in the
List table sheet. Scrolling is possible by using the PgUp-, PgDown- and Arrow-Keys.
If you click the right mouse button on the listing, you can specify a new n_start.

4.3 Comment
Here you can edit a comment to your specification (of algadd parameters,
configuration etc.). If you save your specification (using the file menu), this comment
will be also saved.

4.4 Algadd
The concept of this algorithm is simple and nevertheless very general. Among others it can be used to implement (superpositions of) generalized
random walks. Generalized because p is not restricted to [0, 1] like an usual probability. It can also be a complex number, e.g. a probability
amplitude. The second order finite difference along the location coordinate index k of a symmetric Bernoulli random walk is equal to the first order
finite difference along n like in the Schroedinger equation (cf. footnote on page 13 of http://arxiv.org/abs/quant-ph/0207045). This is also valid for
linear combinations of these random walks (negative combinations can lead to finite differences) which can be also simulated by algadd.

By using the "algadd" algorithm you can add all last quantities of the lattices (all
quantities whose n is maximal, i.e. n=nlast) to the next (new) lattice points (i.e. with
n=nlast+1). Because of this convention every existing quantity remains untouched
(for documentation of development).
(That's no restriction because parallel to criss-cross addition you can also add the original quantities to the same place in nlast+1, i.e. to the same
other coordinates except coo[0]=k0=nlast+1)

Every algadd algorithm is defined by one table which can be edited here.
A menu for making general changes appears after pressing the right mouse button.

Each column of the table represents one entry which specifies one addition. Every
entry contains:

aanr:
You can combine several algadds, i.e. algadd algorithms with different definitions by
data in several different tables. The index aanr in the left column is the index of the
algadd table. You can change it by pressing 'Q' or 'W', by pressing the right mouse
button and by using the "Alg" Menu. The other columns contain entries and the first
of their cells the index of the entry. In the current version more than 200 entries
(additions per iteration) are possible - there is much freedom for experiments.

p:
The propagator which is the factor by which every copied
(copy, because the original quantity remains unchanged so that development remains visible, see above)

non-zero quantity with n=nlast is multiplied before addition. The name propagator for
p is appropriate because it determines the extent of the propagation from the source
to the destination lattice.
There is a relationship to the Feynman propagator, but p is elementary because it propagates along minimal dn (resp. dt) and every p represents
with its entry exactly one component of the total propagation (which can have many components). Furthermore it does not propagate to n<nlast
resp. past. - according to the definition of the word past..

p is the only complex number in the table, all other numbers are integer. Of course
only those entries with non-zero p have relevance (the other are "empty" and can be
ignored).
If 0<p<1 and if the sum over all p is 1, we may interpret p as probability in the usual sense. More
detailed analysis has to consider that per perception more than one step is necessary. If e.g. 2 steps
are necessary, probability can arise from multiplication of two (sums of) p.

ldest:

lattice-index of the destination (you can use it as index of the destination lattice).

l:

lattice-index of the source (you can use it as index of the source lattice), i.e. only if l
of the source quantity is the same, then it is multiplied and added.

dn, dk1,...,dk30:

Relative offset of the destiny coordinate. Because per iteration the last quantities
(with n=nlast) are added to the "next" or "future" quantities (with n=nlast+1), the offset
of n always is 1.

Example: Suppose, n=3 is the last row of the lattice with non-zero quantities and
some entries of algadd, e.g. entries no. 0,1,2 have the following properties:
p 1/2i -1/2i 1

ldest 1 0 0

l 0 1 0

dn 1 1 0

dk1 1 -1 0

dk2 0 0 0

dk3 0 0 0

dk4 0 0 0

...

This means:
Every non-zero quantity with n=3 and l=0 is

- copied, the copy is multiplied by (1/2i) and added to the quantity with l=1, n=4,
with k1 greater by 1 and with the same other coordinates.

- copied, the copy is multiplied by 1 and added to the quantity with l=0, n=4 and the
same other coordinates.

and every non-zero quantity with n=3 and l=1 is
- copied, the copy is multiplied by -(1/2i) and added to the quantity with l=0, n=4,

with k1 smaller by 1 and with the same other coordinates.

If you read this for the first time, this may seem difficult, but it's only a general
approach which offers very much possibilities and often relatively simple possibilities
are the most important.

For example suppose that the lattice 0 contains the quantity 1 in one point P and
zero quantities anywhere else and the non empty algadd parameters are
p 1 1

ldest 0 0

l 0 0

dn 1 1

dk1 1 -1

dk2 0 0

dk3 0 0

...

This will produce the Pascal triangle, beginning in P. If we replace p by 1/2 we get
the symmetric binomial distribution, beginning in P.

Similar algadd parameters
p 1 -1

ldest 0 0

l 0 0

dn 1 1

dk1 1 0

dk2 0 0

dk3 0 0

...

will produce a first order finite difference along coordinate 1.

Another possibility for this is
p -1/2 1/2

ldest 0 0

l 0 0

dn 1 1

dk1 1 -1

dk2 0 0

dk3 0 0

...

The differences between these possibilities of discrete differentiation are neglected
by analytical considerations. But all possibilities of analytical differentiation can be
translated into discrete differentiation.

For example we can identify coordinates 1, 2, 3 with x, y, z and

p -1/2 1/2 -1/2 1/2 -1/2 1/2

ldest 1 1 2 2 3 3

l 0 0 0 0 0 0

dn 1 1 1 1 1 1

dk1 1 -1 0 0 0 0

dk2 0 0 1 -1 0 0

dk3 0 0 0 0 1 -1

dk4 0 0 0 0 0 0

...

will produce a three dimensional gradient of the last quantities with l=0. The
components d/dx, d/dy, d/dz of the gradient are indexed by l = 1, 2, 3.

Similarly a possibility for a discrete rot operator (with dest. coordinates indexed by l =
3, 4, 5) is
p -1/2 1/2 1/2 -1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2

ldest 4 4 5 5 3 3 5 5 3 3 4 4

l 0 0 0 0 1 1 1 1 2 2 2 2

dn 1 1 1 1 1 1 1 1 1 1 1 1

dk1 0 0 0 0 0 0 1 -1 0 0 1 -1

dk2 0 0 1 -1 0 0 0 0 1 -1 0 0

dk3 1 -1 0 0 1 -1 0 0 0 0 0 0

dk4 0 0 0 0 0 0 0 0 0 0 0 0

...

Obviously the algadd algorithm model is rather flexible.

In the above examples the absolute propagator |p| is arbitrary chosen. Its right choice is dependent on
the units (dimensions) of the underlying quantities and has to be adapted. In case of analytical
considerations the right value of |p| is usually derived from experimental results, e.g. as physical
constant. Discrete considerations can give deeper understanding of the realistic combinatorics.
Particularly the investigation of dimensionless dependences and the accompanying proportionality
factors can be interesting.

Because there is much freedom in designing the variables of the algorithm, it may suffice for an initial
step towards a reality conform description. It can only suffice for further steps, if these variables
(especially p) don't change with increasing n in physical reality, i.e. if they are always the same as in
the initial step. If this is not the case it would be possible to expand the scheme as soon as we have
more concrete information. For example we can define variables like p as functions of previous lattice
quantities. After all we should not forget, that variables like p, which can be interpreted as probability,
are mean average quantities. They are determined during a concrete experiment and it is reasonable
to assume that free will has limited influence on that, if conservation laws are not violated (e.g. due to
anti symmetrical influence).

4.5 Sums1
For all lattices and two selectable subspaces of it the sums over all lattice quantities
q are displayed together with their count (=cnt) and their mean (sum q/cnt). The
same is done for their absolute squares |q|^2 and for all quotients between the sums
over both subspaces and the total sum. When specifying the subspaces or "ranges"
1 resp. 2 by entering the minima and maxima coordinates (Min 1,Max 1 resp. Min 2,
Max 2) for every dimension in the left table, you can indicate "no lower limit" by typing
"-" as Min, and "no upper limit" by typing "+" as Max.

By typing "X" in the left table (with "Range") you can choose the x-coordinate of both
range 1 and range 2 ("x1 x2") for representation in the table sheet Graph1 . By
typing "A" you choose it for range 1 ("x1"), by typing "B" for range 2 ("x2"). By typing
"Y" you can also define the y-coordinate for the 2D Graph2 . By typing "C" you
choose it for range 1 ("y2"), by typing "D" for range 2 ("y2").

You can define and activate several pairs of ranges (Range1, Range2) by changing
the index of the defining table. This index is displayed in the first cell of the left
column. Similarly like aanr you can change it by pressing 'Q' or 'W'.

After pressing the right mouse button a menu appears which offers some useful
possibilities for quick initialization of the ranges.

4.6 Sums2
For every lattice-index l the sums over all lattice quantities q and separately also over
those with n=0, 1 (selectable) and nlast, nlast-1 are displayed together with their
count (=cnt) and their mean (sum q/cnt). The same is done for their absolute squares
|q|^2.

4.7 Graph1
The Sums over the ranges defined in the Sums1 sheet are displayed along (in
dependence of) the integer coordinate x specified in the left table of Sums1.
By clicking on the colored check boxes you can plot the graph for
cntAt = count at the coordinate(s)
 (can be greater than 1, if sums1 specifies a multidimensional range)

Re(q) = real part of q at x
Im(q) = imaginary part of q at x
|q|^2 = squared absolute value of q at x
|q| = absolute value of q at x
for range 1 of left table in the Sums1 sheet (left 5 checkboxes) and
for range 2 of left table in the Sums1 sheet (right 5 checkboxes).

If option "Graph1_divmode" is set to 1, all these quantities are divided by the total
fitting count cnt; if this option is set to 2, the quantities v1 of range1 are divided by
those of range2 with convention v1/0:=0.

If the option "Graph1_BarDoubleWidth" is true and only every second integer of
coordinate x is non-zero, the widths of the bars are doubled due to better visibility. In
this case a red "d" appears in the checkbox line.

If two Curves are plotted, a white Label with "T" (if normal mode) becomes visible
between the checkboxes of range 1 and 2. If you click on it, it changes to "o" and a
parameter-plot of both curves is generated, in which x=y1 (y of the first curve) and
y=y2 (y of the second curve).
(The symbol "o" is used because this parameter plot option often is used to display circular curves.)

4.8 Graph2
Graph2 is the 2D variant of Graph1: The Sums over the ranges defined in the Sums1
sheet are displayed along (in dependence of) the two integer coordinates x and y
specified in the left table of Sums1. Due to 2D visualization the quantity q is not
represented by the y-coordinate of a plot but by the brightness of a color.
When clicking on the radio button you can generate the graph for
cntAt = count at the coordinate(s)
 (can be greater than 1, if sums1 specifies a multidimensional range)

Re(q) = real part of quantity at x, y
Im(q) = real part of quantity at x, y
|q|^2 = squared absolute value of q at x, y
|q| = absolute value of q at x, y
for range 1 of left table in the Sums1 sheet (left 5 checkboxes) and
for range 2 of left table in the Sums1 sheet (right 5 checkboxes).

The same can be done for the quantities divided by the total fitting count cnt if option
"Graph2_divide_y_by_count" is activated in the Config sheet.

If option "Graph2_BoxDoubleWidth" is true and only every second integer is non-
zero, the widths of the boxes are doubled due to better visibility. In this case a red "d"
appears in the checkbox line.

By clicking on the button "set ny:..." in the upper left corner you can activate another
plot mode in which multiple 1D plots (one for maximal ny different quantities of y) are
possible. Blue plots are activated/deactivated be clicking on one of the entries in the
left table. By double clicking red plots are activated. By pressing the right mouse
button within the table a menu for simultaneous selection / unselection of all plots is
activated. If in the configuration "Graph2a_max_dypix_per_plot" and
"Graph2a_max_dypix_percent" are greater than 0, the plots are shifted along y and
so better distinguishable; in this case the y scaling is valid only for plot 1.

4.9 Config
Using this sheet you can check and adjust all configuration parameters to your own
needs. If the file "wqpcfg.aa1" exists in the current directory, all parameters marked
by "u" (in the r-column) are initially read from it. They define the uniform default
configuration.

5 Menus
Using the menus you can save data, start algorithms etc:

5.1 File menu
For writing / reading all data (lattice quantities, algorithm parameters, configuration)
to / from an file with name *.aa1 in ASCII format. Also for default initialization (cf.
wqpcfg.aa1) and for determination of warning level.

It is possible to specify an initial filename by using it as start parameter of the
program.

5.2 Cmd menu
Especially for global commands on the lattices like copying, moving along n, deletion
etc... There is also the possibility to delete those last (n=nlast) lattice points which
have the smallest |q|. This can be necessary to branching algorithms without too
much memory consumption.

5.3 Mod menu
For global modifications on the lattices like initialization, conversion etc...

5.4 Alg menu
For starting the algorithms, especially for starting of the algadds 0...15, i.e. the algadd
algorithms defined by tables 0...15.
Due to quick handling of different definitions of Algadd you can start algadd 0, 1, 2
directly. For start of the rest of the algadds you first change aanr (the table index)
and then use "Start algadd". Note that start is not possible (grey menu items) if the
corresponding algadd table contains only zero entries.

If the item "algadd with del" is chosen, after every iteration of algadd all entries of the
lattices are deleted except those with maximal n=nlast. This is useful if there is not
enough memory in the computer hardware. If a graph along n (defined by Sums1) is
wished, the deletion may be restricted to those entries outside Sums1 (option "AA del
outside S1"). This is also valid for option "AA Tracking Mode" which additionally
automatically deletes the smallest "DelSmallPercent_Default" (->config) percent
iteratively every time when more than "Algadd_TM_DelSmallestAfterKB" (->config)
are allocated. This can be convenient to keep track of longer memory wasting
developments.

The menu also provides means for copying and changing algadd definitions (tables).

5.5 Help menu
For start of help.

5.6 A:...
Shows index of the current algadd table index. By clicking on it you can change it.

5.7 S:...
Shows index of the current Sums1 table index. By clicking on it you can change it.

5.8 C or (C)
C indicates that wqpcfg.aa1 exists in the current directory, (C) indicates that it does
not. If the file exists, its contents are used as uniform default configuration, if not, the
configuration is used which is saved in individual .aa1 files.

5.9 US
This menu activates the user form with code in the unit wqpus1.cpp. If you want to
write own code, e.g. for implementation of own special algorithms, it is
recommendable that you place your code in this separate file to ensure well defined
program structure also in case of further versions.

