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Abstract. In this paper standardized vectorial (quantitative) representation of 

medical data is suggested for use in patient records. Vectorial representations are 

(as sequences of numbers) language independent, precise, directly comparable, 

and they allow advanced evaluation, e.g. similarity calculation using well defined 

distance functions. It is possible to search for a patient with a certain combination 

of diagnostic parameters on the Web records of patients with similar parameters. 

The information about chosen treatments and treatment outcome at these patients 

can be used anonymously or pseudonymously for decision support. Because 

patient records from all countries can be compared, in the long run this could open 

systematic access to a very large wealth of clinically relevant information. Here 

the technical principle is described and illustrated by examples (e.g. similarity 

search of heart sounds). Previously published material is integrated in parts for 

explanation of the motivation and background. 
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1. Introduction 

Step by step it is becoming common to store information about anamnesis, diagnostics, 

treatment and treatment result in electronic patient records. Together these records 

summarize a huge and permanently increasing wealth of valuable information which by 

far exceeds the knowledge of any human doctor. It is clear that this should be used for 

decision support, according to the wishes of the patients (anonymously or 

pseudonymously). Until now, however, patient records are usually stored in separated 

databases in incompatible formats. To alleviate exchange of health data, much effort is 

invested in building standards for electronic interchange of clinical, financial, and 

administrative information among health care oriented computer systems [1], and huge 

vocabularies have been created. For example, SNOMED CT [2] is a medical ontology 

with increasing size that contains already today within its English version more than 

300000 concepts, 900000 descriptions and 1300000 relationships. There are also large 
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collections of identifiers available for exchange of quantitative data, e.g. LOINC® [19]. 

Quantitative data can help to improve the resolution of symbolic descriptions. This is 

desirable and welcome for decision support. Because optimal therapeutic decisions are 

the aim, the representation of medical data should be even designed for decision 

support. Here we propose a concept for this. It is designed to support the clinician in 

his cycle of decision: 

 

(a) The clinician makes measurements (in the broadest sense, also speaking with 

the patient and looking at a picture is a measurement). 

(b) The clinician focuses on those measurement results which are interesting for 

his therapeutic decisions (feature extraction). 

(c) The clinician compares these measurement results with experience. At this he 

may use rules or models which are derived from common experience. 

(d) The clinician decides for therapy, and measures the effect of his decision, i.e. 

the cycle starts again with (a). 

 

Usually several measurements are done before therapeutic decisions, and so (a) can be 

a complex process which also requires decisions. The decision for the initial 

measurements has to be done by the clinician, together with the patient who tells the 

clinician his concerns. After this initial data acquisition the clinician has a rough 

impression and can select a keyword (a "rough diagnosis") or already provide certain 

measurement results to get support when he decides for further fine measurements. In 

2.5 is described how this can be used to get help for steps (a) and (b). For support of 

steps (c) and (d) we propose standardized vectorial representation of medical data. 

Vectors or feature vectors (sequences of numbers) within a vector space (metric space) 

provide besides high resolution also multidimensional comparability. This is especially 

in step (c) important and allows high resolution search within a large collection of data. 

 

The usage of vector spaces is (of course) not new in informatics, there are already 

well known applications e.g. in bioinformatics, biophysics, signal processing, imaging, 

and vector spaces are used for data integration within the framework of the Conceptual 

Space approach [3][4][5]. Conceptual Spaces follow a theory of describing entities at 

the conceptual level in terms of their natural characteristics similar to human cognition 

in order to avoid the symbol grounding issue [6]. They enable representation of 

resources as vectors within a geometrical space which is defined through a set of 

quality dimensions. For instance, a particular color may be defined as vector with the 

dimensions hue, saturation, and brightness. This is finer and more precise than a 

symbolic representation. Describing instances as vectors furthermore enables the 

automatic calculation of their similarity, in terms of their distance, in contrast to the 

costly representation of such knowledge through symbolic representations. Even 

complex data which describe e.g. faces, sounds, fingerprints and biometric data can be 

processed by feature extraction to vectorial form for similarity comparison and 

recognition. Generally, feature extraction is an essential pre-processing step to pattern 

recognition and machine learning problems. The resulting feature vectors open a large 

spectrum of applications for vector spaces [7]. 

 



It is possible to make precise diagnostic measurements on a patient, and to make 

feature extraction on decision relevant findings. The resulting vectorial representation 

can be standardized. This would allow to search worldwide (within all accessible data 

collections) the records of patients with similar diagnostic findings, to study possible 

therapies and their long term consequences with probabilities of failure and success, in 

order to support the clinician in making better decisions. 

 

This motivated us to write this paper which proposes standardized vectorial 

representation of medical data. First we introduce the basics and describe the 

application of vector spaces for representation of quantitative properties and data 

integration in general. Then a framework for vectorial representation of medical data 

and efficient implementation of vectorial similarity search is presented. 

2. Material and Methods 

2.1. Appropriate resources for vectorial representation 

The numbers which represent quantitative data can be regarded as components of a 

vector. Quantification is precondition for vectorial representation. To be suitable for 

vectorial representation, a resource must have one or several quantitative properties, i.e. 

one or several attributes which each have an inherent order (from "little" to "great"). 

We will call such a resource "Quantifiable Resource" (QR). If two QRs are represented 

by instances of the same quantitative property (or properties in case of many 

dimensions), these QRs are comparable. Their vectorial description belongs to the 

same vector space. 

 

For example measurement results and numeric results of feature extraction are 

QRs. Important for similarity comparison is that small changes of the original are 

mapped to small changes of the representing numbers. 

 

2.2. Vector space 

The mathematics of vector spaces or linear spaces is focused in linear algebra and used 

in many areas. There are well known applications in nature sciences, e.g. in physics. 

Also in computer science vectors are used for representation of concepts or real world 

objects, e.g. in metric databases. All vectors which represent the same sort of data are 

comparable and belong to the same vector space. They can be added, multiplied and 

subtracted (which is important for comparison). Let n  denote the dimensionality of a 

vector space V
n
, then the coordinate vectors e1 = (1, 0, ..., 0), e2 = (0, 1, 0, ..., 0), to en = 

(0, 0, ..., 0, 1), form a basis of V
n
, called the standard basis, so that any vector 

n

n Vxxx ∈)...,,,( 21  can be uniquely expressed as linear combination of these vectors: 

(x1, x2, ..., xn) 

= x1(1, 0, ..., 0) + x2(0, 1, 0, ..., 0) + ... + xn(0, ..., 0, 1) 

= x1e1 + x2e2 + ... + xnen. 

 

It is possible to define a norm [8] or "length" function on a vector space. Then the 

vector space can be called metric space [9]. Let || || denote the norm and BA,  two 

vectors, then the distance d between A and B is the length of the difference vector: 
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With A  and B  also the difference BA −  is a vector. There are many norms and 

associated metrics (distance functions). Well known are the Manhattan metric and the 

Euclidean metric. For clarification we write the Euclidean metric here explicitly - 

without loss of generality. Let BA,  denote two vectors with )...,,( 21 naaaA = , 

)...,,( 21 nbbbB = , ℜ∈ii ba , , then the unweighted Euclidean distance between A  and 

B  is 
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Different dimensions can have different variance and importance. Therefore it is 

adequate to define a weighting vector )...,,( 21 nwwwW = , ℜ∈iw \{0} and the weighted 

Euclidean distance: 
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If 1=iw  for every dimension ( )ni ...,2,1∈ , the unweighted distance (1) is 

identical to the weighted distance (2). Here by "distance" we always mean the weighted 

distance. The greater iw , the more contributes dimension i  to the distance. Formula 

(2) shows that 0),( ≥BAd ; the distance ),( BAd  is the greater, the more A  and B  

differ, and 0),( =BAd  if and only if BA = , i.e. ii ba =  for every dimension. So we 

see that (2) can be used to quantify similarity between two vectors. 

 

2.3. Vectorial Resource Descriptors (VRDs) 

The proposed data structure for representation of a QR is called Vectorial Resource 

Descriptor (VRD). We suggest a design with full integration into the Web of Linked 

Data, to achieve maximal efficiency within the current Web Infrastructure. The 

Resource Description Framework (RDF) can be used, with HTTP URIs (and not other 

URI schemes as URNs and DOIs) as identifiers, in agreement with the 

recommendations for Linked Data [10]. HTTP URIs provide as Web Addresses a 

simple way to create globally unique names
2
 and task sharing without centralized 

management, and they work not just as a name but also as a means of accessing 

information about a resource over the Web. This is in many applications even 

necessary, in connection with the vectorial approach it is necessary to get immediate 

access to the definition of the valid distance function of the vector space for calculation 

of similarity. 

 

The VRD structure is shown in Figure 1. It contains: 

(e) The identifier of the QR (QRI). It is a HTTP URI 

 which points to the resource. 
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 These can integrate also names of existing definitions, e.g. codes of LOINC® [19] or 

DOIs, so systematic adoption of existing work is possible. 



(f) The Vector Space Identifier (VSI). It is a HTTP URI 

 which points to the Vector Space Descriptor (VSD). 

(g) The feature vector (usually a sequence of numbers
3

). 

 It represents the quantitative properties of the resource. 

Additionally it can contain: 

(h) Auxiliary data, e.g. date, keywords. 

 

 

Figure 1. The Vectorial Resource Descriptor (VRD). It is the data structure for 

representation of a QR. The components QRI and VSI are both HTTP URIs. 

 

The feature vectors of all VRDs with the same VSI are elements of the same vector 

space and comparable as described in 2.2. Similarity search is done within this space. 

As HTTP URI the VSI not only identifies the content of the feature vector, it 

simultaneously points to the Vector Space Descriptor (VSD, Figure 2) which provides 

all necessary information about the vector space, particularly about the metric for 

comparison, definitions of dimensions, templates for human readable representation of 

instances and links to further related Web content. 

 

 

Figure 2. The Vector Space Identifier (VSI) points to the Vector Space Descriptor 

(VSD) which provides important information about all VRDs with this VSI. 
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 This sequence can generally represent numeric mathematical objects (also e.g. 

matrices for conversion of vectors, tensors). The search process also allows an 

expanded definition: More generally it can be defined as a data structure designed for 

efficient comparison. Usually the result of the comparison is a number. 

QRI: Identifier of the QR 

VSI: Vector Space Identifier 

feature vector 
auxiliary data 

 

 

 

 

VSD 

 

VSI 

(HTTP 

URI) 

 
- Defining information 

   (multilingual) 

- Keywords 

- Templates for human readable 

   representation (multilingual) 

- Metric for similarity search 
- links to lists of related VSIs 

   and related Web content 

- further associated information 



VRDs are machine readable and can be embedded into the semantic Web as 

Linked Data [11]. They are uniformly comparable and searchable, and the usage of 

HTTP URIs makes it possible to share the work for definition of vector spaces and 

generation of VRDs among all domain name owners. 

 

2.4. Vectorial Web Search 

Subsequently we assume that the patient records are distributed over the Web and 

accessible according to the wishes of the patient. So the total Web is the database of 

patient records, therefore we use the term "search engine" for the tool which allows 

similarity search of patient records according to the wishes of the user. The VRDs are 

the fundament of Vectorial Similarity Search over the total Web (Vectorial Web 

Search). Due to the standardized structure of the VRDs one and the same search engine 

can be used for all search queries. Vectorial Web Search consists of the following 

steps: 

 

• User provides a VRD or only its feature vector F with VSI. 

• User confines search by a regular expression and/or by a conventional word 

based search string S (optional) 

• Search engine selects all VRDs  

- with the chosen VSI 

- optionally with string S at the associated resource 

  (identified by QRI) 

via conventional word based search 

• If a regular expression is given in step two, the collection is confined so that it 

fulfills this expression. 

• Using the metric provided in the VSD (figure 2) the search engine calculates 

distances between the feature vector F and the feature vectors of the collected 

VRDs and sorts them according to distance. 

• In the search result the rank of collected VRDs and associated resources is the 

higher, the smaller the distance is. 

 

As it is apparent in the above list, Vectorial Web Search starts with word based 

search (for the VSI): After the user has provided a VSI and feature vector F, among all 

VRDs those with this VSI are selected and (after optional further confinement) used for 

comparison, i.e. the distances between their feature vectors and the searched feature 

vector F are calculated. In the search result the rank of VRDs and (via QRI, figure 1) 

associated resources is the higher, the less the distance is, i.e. most similar resources 

are listed first. 

2.4.1. Combination of VRDs 

It is possible to combine several VRDs in a search to find resources which are 

simultaneously associated with (resp. in the QRI field of) all VRDs. At this it is 

necessary to use a combined distance dcomb . It can be set to the weighted sum of the 

single distances: 

∑=
n

i

iicomb dmd  



in which n is the number of combined VRDs, mi the weighting factor and di the 

distance of VRD i. One cannot expect that the user provides appropriate weighting 

factors mi, so there must be the option for automatic weighting. A possible solution is 

to set 

 

i

i
s

m
1=  

in which si is the standard deviation of the distances of VRD i. This is a reasonable 

choice because it takes into account that the statistical significance of a fluctuation is 

the greater, the less the standard deviation of the concerned variable is. 

 

2.5. Application in medicine 

The here proposed application in the medical domain is the representation of decision 

relevant anamnestic and diagnostic (and past therapeutic, e.g. medication) data in 

vectorial form (as VRDs). As mentioned in the introduction (see 1), in the cycle of 

decision the clinician makes (unconsciously) feature extraction from all available 

measurements (also from complex measurements like MRI scans) and compares the 

result with experience. Important parts (of course not all) of this procedure can be 

mapped to database algorithms. 

First the scientific community has to start a diagnosis-VSI-database: A list of 

important keywords or "rough diagnoses" must be defined or derived from existing 

ontologies like SNOMED CT [2]. Then to every
4

 rough diagnosis standardized 

measurement combinations must be associated, which provide the most important data 

necessary for therapeutic decisions and for control of therapeutic success, with 

standardized numeric representations of the results - as combinations of elementary 

VRDs with appropriate VSIs
5
, with combined distance functions (default see 2.4.1). 

The combination of elementary VRDs with minimal dimensionality can be appropriate 

to facilitate flexible queries. After creation of the diagnosis-VSI-database the following 

workflow is possible: 

• Select a rough diagnosis in the diagnosis-VSI-database. 

• Get from the diagnosis-VSI-database the information about the combination 

of VSIs which is appropriate for this rough diagnosis, and make all necessary 

measurements to get the VRDs with these VSIs which are connected with this 

rough diagnosis. 

• Optionally make further measurements which are interesting (relevant for 

therapeutic decisions.) and convert them to VRDs. 

• Select all decision relevant VRDs and send them to the search engine to 

search patient records which have within a maximal date range these VRDs 

with minimal distance (2.4.1). 

• Look in the found patient records whether additional diagnostic 

measurements have been useful. If appropriate, make these measurements, 

convert these to VRDs and continue with the previous step. 
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 It makes sense to start with most important and most expensive rough diagnoses. 

5
 If the medical community defines a 3D reference coordinate system on an anatomical 

reference model, it is possible to use a VSI for localization of most diagnostic findings 

and the "rough diagnosis" need not contain localization information.  



• Look in the found patient records for the most successful therapeutic 

decisions. Statistical evaluation and mathematical modeling is possible. 

3. Examples 

3.1. VRD combination for vertebral (osteoporotic) compression fractures 

Let us take as example "vertebral compression fracture" as rough diagnosis. We will 

reflect on a VRD combination, which could be associated to this rough diagnosis in the 

diagnosis-VSI-database. Aim is to pack most important decision relevant information 

in a sequence of numbers as short as possible. In case of orthopedic findings the 

geometry is usually important, for an osteoporotic compression fracture we can define 

the numbers v, c and d which show the relative remainders of the vertebral body 

ventrally (v), centrally (c) and dorsally (d). Furthermore the number a, which shows the 

relative narrowing of the vertebral channel can be important, and the number n of the 

vertebra (numbered consecutively from head to sacrum). Let d1, d2, d3, c2, v1, v2, v3, 

a1, a2, a3 denote the scalar lengths of the lines as drawn in figure 3. Then we can 

calculate the numbers v, c, d, a as follows:  

v=2*v2/(v1+v3), 

c=4*c2/(v1+v3+d1+d3), 

d=2*d2/(d1+d3), 

a=2*a2/(a1+a3). 

 

Figure 3. MRI scan of a vertebral compression fracture in the area of maximal 

compression. The lengths a1,a2, a3, d1, d2, d3, c2, v1, v2, v3 are used for construction 

of the feature vector of this fracture as described in the text. 

 

The VRD for the geometry of the compression has the 5 dimensional feature 

vector (v,c,d,a,n). Additionally a representative measurement of the bone density t like 

the DXA T-score (at representative vertebra, e.g. L1) may be important, so that we 

could combine (2.4.1) the two VRDs with feature vectors (v,c,d,a,n) and (t) to search 

for patient records which contain similar parameters v, c, d, a, n, t, and for the most 

successful therapeutic decisions at these patients. It is clear that purely symbolic 



approaches cannot provide the resolution and precision of this method. For decision 

support, however, such precision is desirable. 

 

3.2. Similarity search of heart sounds 

We have built a software prototype to demonstrate the functionality of the approach 

also in case of nontrivial vectorial representations. Complex original data like sounds 

and pictures usually require an appropriate transformation as first step for calculation of 

feature vectors. In case of heart sounds a wavelet transformation proved to be useful, 

because it allows analysis of the signal at different scales and times [12][13]. This is 

implemented in our software. It consists of two program modules: 

 

The first module (used for generation of searchable data) reads a sequence of heart 

sounds from a .wav file and displays it on the screen (figure 4). One period is 

reproducibly selected (figure 5) and a Daubechies wavelet transformation is performed. 

The smoothened absolute values of the transformation coefficients (figure 6) are used 

for building a searchable feature vector of the sound. This is stored as a VRD in a local 

database in an internal format. 

 

The second program module (used for similarity search) calculates a VRD from 

the upload
6
 and compares it with the VRDs of the database by calculating the distances 

to them. It generates the search result which is an ordered list of references to these 

VRDs (figure 7). The less the distance, the higher is the rank of a VRD in the search 

result list. This means that VRDs which represent the most similar sounds in the 

database have upper position in the search result. The main parts of the second program 

module could be used also for similarity search of other data which allow a vectorial 

description. This means that one and the same search engine can be used for similarity 

search in very different applications, if the searchable data are stored in an appropriate 

way. 

 

Technical remarks: The finest scale for the wavelet transformation has been 2
11

 

(figure 8). This resulted in 40942
11
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in which n=4094 is the dimensionality, X, Y are the compared vectors, xi, yi their 

coordinates, i.e. the smoothened absolute values of the wavelet coefficients, and x  the 

mean of the xi resp. y  the mean of the yi. It is apparent that the distance function 

contains the correlation coefficient and ensures that the greater the correlation is, the 

smaller the distance becomes. So the rank of a heart sound is the greater in the search 

                                                           
6
 The module allows upload of original heart sounds as .wav files in compressed form. 

Because it is specialized to one kind of original data, it can convert these to VRDs 

before comparison without needing a VSI. 



result, the more its wavelet decomposition correlates with the wavelet decomposition 

of the searched sound. 

 

We want to underline that this implementation is designed for illustration purposes. 

All 4094 coefficients have been used, so that the time frequency distribution becomes 

well visible (figure 6). For more efficiency there would be much potential for 

compression and dimension reduction, because heart sounds have by far not the 

variability which 4094 coefficients provide. Moreover the process could be fully 

automated [14]. In contrast to this the workflow of figures 4, 5 and 6 shows the 

principle and demonstrates a typical half automatic feature selection. Especially in the 

initial state after introduction of VRDs the half automatic selection of features (or even 

manual selection like done in figure 3) can have advantages because it can help to keep 

overview, and introduction of software for feature vector and VRD generation can be 

accelerated. Later step by step more and more automation is possible, if wished. 

 

 

Figure 4. Sounds of a heart with aortic valve stenosis; vertical axis: relative amplitude, 

horizontal axis: time in seconds. The brown dashed lines have been set reproducibly by 

a catching algorithm after rough manual prepositioning (semi-automatic process). They 

show the bordering of a representative period. 

 

 

Figure 5. The bordered part of figure 4 is stretched so that one period remains, i.e. the 

length of the period is standardized. So heart sounds with different period length can be 

compared. 

 



 

Figure 6. The sound of figure 5 after Daubechies wavelet transform; smoothened 

absolute values of the wavelet transform coefficients for five different scales. They can 

be directly used for building a searchable feature vector of this heart sound. Note the 

delayed appearance of the high frequency part which results from blood flow through 

the narrowed aortic valve during systole. 

 

Figure 7. Exemplary output of our prototype. The VRD of the uploaded file represents 

the heart sound in case of aortic valve stenosis after wavelet transformation as shown in 

figure 6. Links to resources with most similar VRDs are listed first. The distance d 

quantifies the deviation, the first link points to a VRD which represents the same sound 

like the uploaded file, therefore the distance is zero. 

4. Discussion 

Focus and aim of the approach is multidimensional decision support, i.e. support for 

decisions about the therapy of multidimensional findings ("findings" in the broad sense, 

meant is the complete state with anamnesis, pretreatment) which depend on several 

measurable parameters (e.g. medication, laboratory results). The clinician needs just 

this: He can focus single parameters individually with great flexibility (more flexible 

than software) and treat these more or less independently of each other, but he cannot 

reproduce the complex interaction of several findings, i.e. he cannot reproduce complex 

reality conform multidimensional spaces and their association with certain "optimal" 



therapeutic decisions. The proposed approach helps just for this, because it allows 

representation and localization of multidimensional findings as VRDs and with this the 

localization and grouping of patients with similar findings, to check therapies and 

therapeutic results within this group. 

 

According to 2.4 such grouping of patients bases on similarity comparison and 

similarity search of VRDs (Vectorial Web Search) which is the sequence of two well 

known workflows: 

1. Conventional word based search (for VRDs with the same VSI; this can be 

simplified using an index: To every VSI an index with all VRDs and their 

URLs can be collected beforehand). 

2. Similarity comparison (of the VRDs' feature vectors, as done in metric 

databases or by our prototype) 

 

Both workflows are established, so it has to be expected that also the sequence 

"one after the other" works. Of course the hardware requirement of the global Web 

application must be considered. For larger amounts of data we made a small 

experiment to get a hint about the necessary time for comparison of vectors using a 

C++ compiler on a single PC (Pentium® 4 CPU). The time for calculating 1 million 

weighted Euclidean distances of vectors with dimensionality 10 in double accuracy was 

between 0.20 and 0.21 seconds. Such calculation would be necessary if similarity 

search is done within VRDs with altogether 1 million 10 dimensional feature vectors 

with serial comparison. Depending on implementation, disk access would require 

additional time. To minimize the time for comparison, the total dimensionality (the 

sum of dimensions of all feature vectors) of the searched VRD combination should be 

minimized. This should be also done because the sparsity increases exponentially with 

the total dimensionality in case of a constant amount of data, with points tending to 

become equidistant from one another (“Curse of Dimensionality” [15] [16]). Parallel 

processing can substantially reduce the time for comparison because it is not necessary 

to calculate the distances sequentially. 

We expect the most important problems in the beginning. Initially investment is 

necessary for creating the infrastructure, and initially there won't be enough patient 

records available for decision support. When the number of patient records grows, the 

situation becomes better, because the concept is designed for large data collections. The 

resolution of the numeric description grows exponentially with the dimensionality - it 

is well known that if there are 10 possible values per number, there are 10^k possible 

values for k numbers. Because usually there are much more than 10 possible values per 

number, it becomes soon clear that similarity search has a high resolution and can be 

highly selective even within huge amounts of data - at last a great advantage for 

decision support when many patient records are available. 

 

As long as there are not many patient records with the selected rough diagnosis, 

one may be restrained to the most important parameters (low dimensional search), 

because in this way it is more probable to find patient records with "similar" parameters. 

In the above example 3.1 one may only provide the number n of the vertebra, to find 

compression fractures near this location. When the database returns more cases near 

this n than one can survey, it is possible to provide additional numbers (dimensions) for 

a more selective search. 

 



Additionally to direct decision support the precise vectorial descriptions can be 

useful for skill enhancement (e.g. study of selected diagnostic constellations) and 

scientific research. Because the feature vectors of VRDs with the same VSI represent 

points within the same metric space, there is the possibility for "local statistics", i.e. 

statistics among VRDs whose vectors lay "near" (within a given distance from) a given 

point. For example it is possible to calculate within a given radius the average of a 

further dependent variable or the frequency of some incident. Such local statistics is not 

difficult to interpret, moreover it has the advantage that it can be quickly computed. 

But especially if there are only a few points (vectors) within the investigated radius, the 

result could be imprecise due to coincidental fluctuations and it can be more accurate to 

consider all available points (defined by feature vectors of all VRDs with appropriate 

VSI) for immediate regression analysis or for calculation of a mathematical model [17] 

(blue curve in Figure 8). 

 

 

Figure 8. Local statistics can be used if there are many points „near“ to the area of 

interest. If not, coincidental fluctuations, as shown in the enlarged detail, can become 

relevant and a mathematical model (blue curve), which takes into account all points, is 

more accurate. 

We show a practical example of how such modeling can be used to "interpolate" at 

places where data are missing. Suppose patient records are available which contain 

VRDs whose feature vector describe the medication of a patient in the form (t, x) resp 

(t, y), in which t is the duration of the medication in days, and the numbers x resp y 

represent the daily dosage (e.g. in mg) of medicament X resp. medicament Y. 

Furthermore VRDs with another VSI provide the blood concentration z of a liver 

enzyme (which indicates damage of the liver). For modeling it is possible to select all 

patients with t > tmin (e.g. t > 30 days, to ensure enough medication time), and to 

calculate from the found data points a function [18] which approximates the 

concentration z of the liver enzyme in dependence of the medication dosages x and y. A 

possible resulting function is shown in Figure 9. Because polymedication and drug 

interaction is an increasing problem (especially in geriatrics), the practical relevance of 

the approach is obvious. 

 



 

       0 

Figure 9. Example of a function which estimates the value of a dependent variable z 

(vertical axis: concentration of a liver enzyme as indicator of liver damage) in 

dependence of the two variables x and y (horizontal axes: dosages of two 

medicaments). It is visible that z grows strongly when x or y exceeds a toxic threshold. 

Data from the VRDs' feature vectors can be used for calculation of such a function 

(mathematical modeling). 

 

Of course the data for such modeling could be also fetched from special databases. 

This requires extra programming. The standardized VRD structure, however, can be 

used generally by one and the same evaluation engine which allows to select VSIs and 

the numbers of the feature vectors' dimensions for specification of independent and 

dependent variables. 

 

At last a possibility for anonymization should be mentioned: The patient can select 

the option that his VRDs can be used for decision support, but only statistically over 

more than e.g. 5 patients without showing the individual values. It would be possible to 

calculate and show the VRDs' average (about the therapeutic result) of minimal n (e.g. 

n=5) patients with similar diagnosis in dependence of therapy. 

y 
x 

z 



5. Conclusion 

Vectorial representations are precise, directly comparable, and they allow advanced 

analysis, e.g. similarity calculation using well defined distance functions. Due to the 

shown advantages of vectorial representation the usage of standardized Vectorial 

Resource Descriptors (VRDs) is proposed for representation of medical data in patient 

records. 
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